Gas-Fed Reciprocating Engine Development

Author(s):  
D A Gillespie

In recent years intensive development of reciprocating internal combustion engines has led to progressively higher ratings with improved thermal efficiency and an ability to operate successfully on poorer quality fuels. Rising fuel costs have also led to an increasing interest in alternative fuels, and this in turn has promoted the design and development of engines capable of burning a variety of gases. The paper describes the design performance features and recent development achievements of a range of medium-speed gas-fed reciprocating engines with a capability to burn a range of gaseous fuels from natural gas down to synthetic or by-product gases with low calorific values of 4.85 MJ/m3(n).

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Herry Lesmana ◽  
Zhezi Zhang ◽  
Xianming Li ◽  
Mingming Zhu ◽  
Wenqiang Xu ◽  
...  

Ammonia (NH3) is an excellent hydrogen (H2) carrier that is easy to bulk manufacture, handle, transport, and use. NH3 is itself combustible and could potentially become a clean transport fuel for direct use in internal combustion engines (ICEs). This technical review examines the current state of knowledge of NH3 as a fuel in ICEs on its own or in mixtures with other fuels. A particular case of interest is to partially dissociate NH3 in situ to produce an NH3/H2 mixture before injection into the engine cylinders. A key element of the present innovation, the presence of H2 is expected to allow easy control and enhanced performance of NH3 combustion. The key thermochemical properties of NH3 are collected and compared to those of conventional and alternative fuels. The basic combustion characteristics and properties of NH3 and its mixtures with H2 are summarized, providing a theoretical basis for evaluating NH3 combustion in ICEs. The combustion chemistry and kinetics of NH3 combustion and mechanisms of NOx formation and destruction are also discussed. The potential applications of NH3 in conventional ICEs and advanced homogenous charge compression ignition (HCCI) engines are analyzed.


Author(s):  
José Ramón Serrano ◽  
Francisco José Arnau ◽  
Luis Miguel García-Cuevas González ◽  
Alejandro Gómez-Vilanova ◽  
Stephane Guilain

Turbocharged engines are the standard powertrain type of internal combustion engines for both spark ignition and compression ignition concepts. Turbochargers modeling traditionally rely in look up tables based on turbocharger manufacturer provided maps. These maps as the only secure source of information. They are used both for the matching between reciprocating engine and the turbocharger and for the further engine optimization and performance analysis. In the last years have become evident that only these maps are not being useful for detailed calculation of variables like after-treatment inlet temperature (turbine outlet), intercooler inlet temperature (compressor outlet) and engine BSFC at low loads. This paper shows a comprehensive study that quantifies the errors of using just look up tables compared with a model that accounts for friction losses, heat transfer and gas-dynamics in a turbocharger and in a conjugated way. The study is based in an Euro 5 engine operating in load transient conditions and using a LP-EGR circuit during steady state operation.


2013 ◽  
Author(s):  
Jorge Duarte Forero ◽  
German Amador Diaz ◽  
Fabio Blanco Castillo ◽  
Lesme Corredor Martinez ◽  
Ricardo Vasquez Padilla

In this paper, a mathematical model is performed in order to analyze the effect of the methane number (MN) on knock tendency when spark ignition internal combustion engine operate with gaseous fuels produced from different thermochemical processes. The model was validated with experimental data reported in literature and the results were satisfactory. A general correlation for estimating the autoignition time of gaseous fuels in function of cylinder temperature, and pressure, equivalence ratio and methane number of the fuel was carried out. Livengood and Wu correlation is used to predict autoignition in function of the crank angle. This criterium is a way to predict the autoignition tendency of a fuel/air mixture under engine conditions and consider the ignition delay. A chemical equilibrium model which considers 98 chemical species was used in this research in order to simulate the combustion of the gaseous fuels at differents engine operating conditions. The effect of spark advance, equivalence ratio, methane number (MN), charge (inlet pressure) and inlet temperature (manifold temperature) on engine knocking is evaluated. This work, explore the feasibility of using syngas with low methane number as fuel for commercial internal combustion engines.


2015 ◽  
Vol 725-726 ◽  
pp. 1417-1422
Author(s):  
Anton A. Sinitsyn

The paper identifies the relevance of research on the effectiveness of fire-technical processes in energy devices (boilers, furnaces and internal combustion engines, etc.) in order to optimize them and improve their reliability. The survey revealed the closeness of calculation methods for such devices. The development of engineering methodology of design and verification calculations is necessary for the further development of vibration combustion machines production industry. The author identifies the main problems of formation of calculating methodology for energy devices operating on the basis of vibration combustion. To determine the frequency of the impulse response of these devices the author proposes a mathematical model and the description of the process of the thermodynamic fluctuations in the combustion chamber, allowing to determine the reliability and efficiency of these devices for different purposes based on the principle of self-oscillating combustion of fuel at the design stage.


Sign in / Sign up

Export Citation Format

Share Document