A Technique for Experimental Acoustic Modal Analysis

Author(s):  
F R Whear ◽  
D Morrey

A technique developed to carry out experimental acoustic modal analysis using commercially available structural modal analysis software is described. This uses a finite difference calculation to determine the spatial variation in pressure. In order that the resulting function exhibits the same nodes and antinodes as the actual pressure distribution at resonance, a second-order finite difference calculation is performed to obtain the second spatial derivative. This is implemented in practice using a three side-by-side microphone probe with an analogue differential amplifier. The technique is verified by measuring the natural frequencies and mode shapes of a bare rectangular office. These results are compared with analytical calculations and output from a finite element model. The results show very good agreement for all modes in the frequency range of interest.

2015 ◽  
Vol 727-728 ◽  
pp. 578-582
Author(s):  
Fei Liu ◽  
Wei Liang He

The stress distribution and modal behavior of a space inflatable torus was investigated by nonlinear finite element numerical method. This paper focused on the effect of follower pressure on the modal analysis of the torus, including the effect of configuration change and follower pressure stiffness, and focused on validating the follower pressure stiffness FEM model and its applicability to modal analysis. Research shows that the changed configuration slightly increases the natural frequencies. The follower pressure stiffness significantly reduces the natural frequencies and changes mode shapes order. The modal results are in good agreement with the corresponding shell theory solutions, indicating that the finite element model of the follower pressure stiffness for the inflatable structure modal analysis in this paper is accurate enough and reasonable.


2020 ◽  
Vol 30 (5-6) ◽  
pp. 217-225
Author(s):  
Samir Deghboudj ◽  
Wafia Boukhedena ◽  
Hamid Satha

The present work aims to carry out modal analysis of orthotropic thin rectangular plate to determine its natural frequencies and mode shapes by using analytical method based on Rayleigh-Ritz energy approach. To demonstrate the accuracy of this approach, the same plate is discritisated and analyzed using the finite element method. The natural and angular frequencies were computed and determined analytically and numerically by using ABAQUS finite element code. The convergency and accuracy of the numerical solution was examined. The effects of geometrical parameters and boundary conditions on vibrations are investigated. The results obtained showed a very good agreement between the analytical approach and the numerical simulations. Also, the paper presents simulations results of testing of the plate with passive vibration control.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


2014 ◽  
Vol 607 ◽  
pp. 405-408 ◽  
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Quan Cheng Peng

The gear-shaft-bearing-housing coupled finite element model of marine gearbox was established by using the truss element, the spring element and the tetrahedral element. The modal of gearbox was analyzed by using the ANSYS software. Then through the experimental modal analysis, the natural frequencies of gearbox are obtained. Compare the experimental results with the numerical results, it shows good agreement.


1998 ◽  
Vol 65 (1) ◽  
pp. 258-265 ◽  
Author(s):  
R. R. Reynolds ◽  
E. H. Dowell

The transient response of a structure is predicted using an asymptotic modal approximation of the classical modal solution. The method is aimed at estimating the impulse response problem for high frequency regimes where typical numerical methods (e.g., finite elements) are impractical. As an example, the response of a thin elastic panel is modeled in a frequency range that includes a sufficient number of modes. Both impulsive and arbitrary forms of excitation are considered. It is shown that the asymptotic modal analysis yields an excellent estimate of both the local displacement near the excitation location and of the spatially averaged transient response of the panel for moderate time spans after the excitation is applied. Furthermore, as this approach does not require that the mode shapes or natural frequencies of the structure to be calculated, it is an extremely efficient technique.


2015 ◽  
Vol 667 ◽  
pp. 512-517
Author(s):  
Li Zhi Gu ◽  
Tie Ming Xiang ◽  
Peng Li ◽  
Jian Min Xu

In order to obtain the pinion's natural frequencies and mode shapes of a new kind of spiral bevel gear (SBG) which is logarithmic spiral bevel gear (LSBG) in the unconstrained state for the purpose of dynamic characteristics study, select the low carbon alloy steel 20CrMnTi (China specification) with good mechanical properties, which the carbon content is 0.17%-0.23%, the elastic modulus E=2.06675×1011Pa, the Poisson's ratio is 0.25, and the density is 7.85×103kg/m3, the finite element model of LSBG pinion which consist of 35100 nodes, 19889 Solid187 tetrahedron FEM elements is established by using free meshing method based on LSBG pinion's physical model in this paper. Solve the modal parameters of the first 6 orders, draw the main vibration mode shape according to the first 6 orders natural frequencies respectively. The first 6 orders critical revolution speeds are calculated by the first 6 orders corresponding natural frequencies, and the LSBG pinion allowable work revolution speeds are 117074.16 revolutions per minute. The free modal analysis of the conventional SBG pinion with the same parameters is done for comparison with LSBG pinion. The results show the LSBG pinion's nature frequency and the critical revolution speed are both lower than that of conventional SBG. The conclusions reflect the vibration response characteristics of LSBG pinion, and provide theoretical basis for dynamic response, structure design and optimization of LSBG pinion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.


Author(s):  
Yasser Aktir ◽  
Jean-François Brunel ◽  
Philippe Dufrenoy ◽  
Hervé Mahe

Clutch system is an important element in the vehicle powertrain. It transmits the rotation from the crankshaft to the gearbox input shaft and filters axial and torsional vibrations providing from engine or induced by friction. This paper discusses axial dynamic behavior of automotive clutch for manual transmission. For this study, a tridimensional finite element model of clutch system is developed to simulate a clutch shaker test. First, an impact hammer test is performed to identify vibration properties of each clutch component. A pre-stressed modal analysis is then carried out to determine mode shapes and its associated natural frequencies of the clutch assembly. Shaker and simulation results are eventually compared to validate the clutch model. This latter offers for the design phase, a tool to avoid natural vibrations or to vibrate at specified frequencies.


2017 ◽  
Vol 13 (5) ◽  
Author(s):  
Fang Wang ◽  
Shaochun Ma ◽  
Wei Wei ◽  
Yong Zhang ◽  
Ziyi Zhang

Abstract Determining the natural frequency of watermelon is important to reduce loss by vibration during transportation. The purpose of frequency sweep test is to determine the tolerance of watermelon to vibration within a certain frequency range and to search the resonant frequency of watermelon in a certain frequency range. Frequency sweep test of Xinong No.8 watermelon cultivar was conducted, and the acceleration transmissibility curve was obtained. Furthermore, the 1st and 2nd order natural frequencies of watermelon were determined as 35.125 Hz and 71.034 Hz respectively from the acceleration transmissibility curve. Based on Geometric and mechanical parameters of Xinong No.8 watermelon cultivar, a finite element analysis model was developed and modal analysis of watermelon was carried out to obtain its natural frequencies and mode shapes. Since the value of 1st and 2nd order resonance frequency were the same or similar to the value of 3rd, 4th, and 5th order resonance frequency, this study only focused on 1st and 2nd order modes. The 1st order and 2nd order natural frequency test data fit to the corresponding simulation data well which validated the FEA model. This study demonstrated the feasibility of detecting the resonant frequency of watermelon vibration during transportation using FEA methods and provided a theoretical basis for watermelon transportation device design to reduce damage by avoiding resonant frequency.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


Sign in / Sign up

Export Citation Format

Share Document