Noise and Vibration Analysis of an S-Cam Drum Brake

Author(s):  
A J Day ◽  
S Y Kim

Modal analyses of an S-cam drum brake assembly, using finite element analysis, are presented. A friction interface contact pressure-dependent model for the coupling between the lined brake shoe assembly and the brake drum is described. Using this model, natural modes and frequencies are predicted which compare well with measured data for the brake assembly. A parametric study of brake design and performance variables is presented which predicts the noise propensity of the brake design based on the binary flutter model. Good agreement with measured brake noise and trends, experience and other published work on S-cam brake noise is shown.

2012 ◽  
Vol 249-250 ◽  
pp. 712-717
Author(s):  
M.P. Natarajan ◽  
B. Rajmohan

Brakes are machine elements that absorb kinetic energy in the process of slowing down or stopping a moving part. Brake capacity depends upon the unit pressure between the braking surfaces, the coefficient of friction, and the ability of the brake to dissipate heat equivalent to the energy being absorbed. In braking system, drum brake is used mostly for automotive application. During the braking process, the forces and pressures in a drum brake are difficult to determine because of the manner in which the shoe contacts the drum. Finite Element analysis has been used to predict interface temperatures and heat flows and the results have been compared with experimental measurements made using fine thermocouples. Good agreement has been achieved, showing that the proportion of heat which flows into the friction material varies with time and temperature.


2010 ◽  
Vol 37-38 ◽  
pp. 880-885
Author(s):  
Xiao Bin Ning ◽  
Ji Sheng Shen ◽  
Bin Meng

In order to accurately calculate the braking efficiency factor of drum brake shoe of heavy truck, virtual prototyping of a heavy truck's brake is demonstrated. The requirements for brakes include not only its performance but also its comfort, serviceability and working lifetime, which must be high. The finite element analysis software ANSYS and the multi-body system simulation software MSC.ADAMS were used to establish the drum brake nonlinear 3D simulation model. The model was built by developing joint program module between the rigid shoe and the flexible lining and nonlinear contact force program module between the lining and the rigid drum. Using this model, the simulation was executed for the drum brake of 32t heavy duty truck. The results show that the simulated braking efficiency factor coincides with experimental results of the braking efficiency factor of the heavy truck drum brake.


1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


Author(s):  
Valerio Viero ◽  
Tamara Triossi ◽  
Daniele Bianchi ◽  
Alessandro Campagna ◽  
Giovanni Melchiorri

Author(s):  
Qing Xiang Pei ◽  
B.H. Hu ◽  
C. Lu

Thermo-mechanical finite element analysis was carried out to study the deformation behavior and temperature distribution during equal channel angular pressing (ECAP). The material model used is the Johnson-Cook constitution model that can consider the multiplication effect of strain, strain rate, and temperature on the flow stress. The effects of pressing speed, pressing temperature, workpiece material and die geometry on the temperature rise and flow behavior during ECAP process were investigated. The simulated temperature rise due to deformation heating was compared with published experimental results and a good agreement was obtained. Among the various die geometries studied, the two-turn die with 0° round corner generates the highest and most uniform plastic strain in the workpiece.


Author(s):  
O̸sten Jensen ◽  
Anders Sunde Wroldsen ◽  
Pa˚l Furset Lader ◽  
Arne Fredheim ◽  
Mats Heide ◽  
...  

Aquaculture is the fastest growing food producing sector in the world. Considerable interest exists in developing open ocean aquaculture in response to a shortage of suitable, sheltered inshore locations. The harsh weather conditions experienced offshore lead to a focus on new structure concepts, remote monitoring and a higher degree of automation in order to keep the cost of structures and operations within an economically viable range. This paper proposes tensegrity structures in the design of flexible structures for offshore aquaculture. The finite element analysis program ABAQUS™ has been used to investigate stiffness properties and performance of tensegrity structures when subjected to various forced deformations and hydrodynamic load conditions. The suggested concept, the tensegrity beam, shows promising stiffness properties in tension, compression and bending, which are relevant for development of open ocean aquaculture construction for high energy environments. When designing a tensegrity beam, both pre-stress and spring stiffness should be considered to ensure the desired structural properties. A large strength to mass ratio and promising properties with respect to control of geometry, stiffness and vibration could make tensegrity an enabling technology for future developments.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ziqiang Xu ◽  
Gen Zhang ◽  
Hong Xia ◽  
Meijuan Xu

Hexagonal dual-mode cavity and its application to substrate integrated waveguide (SIW) filter are presented. The hexagonal SIW resonator which can combine flexibility of rectangular cavity and performance of circular cavity is convenient for dual-mode bandpass filters design. By introducing coupling between source and load, the filter not only has good selectivity due to two controllable transmission zeros, but also has a small size by the virtue of its single-cavity structure. A demonstration filter with a center frequency of 10 GHz and a 3 dB fractional bandwidth of 4% is designed and fabricated to validate the proposed structure. Measured results are in good agreement with simulated ones.


2021 ◽  
pp. 136943322110073
Author(s):  
Erdem Selver ◽  
Gaye Kaya ◽  
Hussein Dalfi

This study aims to enhance the compressive properties of sandwich composites containing extruded polystyrene (XPS) foam core and glass or carbon face materials by using carbon/vinyl ester and glass/vinyl ester composite Z-pins. The composite pins were inserted into foam cores at two different densities (15 and 30 mm). Compression test results showed that compressive strength, modulus and loads of the sandwich composites significantly increased after using composite Z-pins. Sandwich composites with 15 mm pin densities exhibited higher compressive properties than that of 30 mm pin densities. The pin type played a critical role whilst carbon pin reinforced sandwich composites had higher compressive properties compared to glass pin reinforced sandwich composites. Finite element analysis (FE) using Abaqus software has been established in this study to verify the experimental results. Experimental and numerical results based on the capabilities of the sandwich composites to capture the mechanical behaviour and the damage failure modes were conducted and showed a good agreement between them.


Sign in / Sign up

Export Citation Format

Share Document