scholarly journals Chlorogenic Acid Inhibits Osteoclast Differentiation and Bone Resorption by Down-Regulation of Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Nuclear Factor of Activated T Cells c1 Expression

2013 ◽  
Vol 36 (11) ◽  
pp. 1779-1786 ◽  
Author(s):  
Sung Chul Kwak ◽  
Cheol Lee ◽  
Ju-Young Kim ◽  
Hyun Mee Oh ◽  
Hong-Seob So ◽  
...  
Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 4613-4625 ◽  
Author(s):  
Masakazu Kogawa ◽  
David M. Findlay ◽  
Paul H. Anderson ◽  
Renee Ormsby ◽  
Cristina Vincent ◽  
...  

The extrarenal synthesis of 1α,25 dihydroxyvitamin D3 (1,25D) has been demonstrated in a number of cell types including osteoblasts and cells of the monocyte/macrophage lineage. The skeleton appears responsive to serum levels of the 1,25D precursor, 25 hydroxyvitamin D3 (25D), in terms of bone mineralization parameters. The effect of metabolism of 25D into active 1,25D by osteoclast lineage cells is unknown. We found that CYP27B1 mRNA expression increased with exposure of human peripheral blood mononuclear cells (PBMCs) to macrophage colony-stimulating factor in the presence or absence of receptor activator of nuclear factor-κB ligand. Consistent with this, human osteoclast cultures incubated with 25D produced measurable quantities of 1,25D. Osteoclast formation from either mouse RAW264.7 cells or human PBMCs in the presence of physiological concentrations of 25D resulted in significant up-regulation of the key osteoclast transcription factor, nuclear factor of activated T cells-c1 in PBMCs and a number of key osteoclast marker genes in both models. The expression of the osteoblast coupling factor, ephrin-b2, was also increased in the presence of 25D. Levels of CYP27B1 and nuclear factor of activated T cells-1 mRNA correlated during osteoclastogenesis and also in a cohort of human bone samples. CYP27B1 short-hairpin RNA knockdown in RAW264.7 cells decreased their osteoclastogenic potential. 25D dose dependently reduced the resorptive capacity of PBMC-derived osteoclasts without compromising cell viability. 25D also reduced resorption by RAW264.7- and giant cell tumor-derived osteoclasts. Conversely, osteoclasts formed from vitamin D receptor-null mouse splenocytes had increased resorptive activity compared with wild-type cells. We conclude that 25D metabolism is an important intrinsic mechanism for optimizing osteoclast differentiation, ameliorating osteoclast activity, and potentially promoting the coupling of bone resorption to formation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2361-2361
Author(s):  
Stefano Molica

Abstract The development of multiple myeloma (MM)-bone disease is mediated by increased recruitment and activity of osteoclasts (OCs). Osteoclastogenesis is regulated by a complex signaling system, that involves receptor activator of nuclear factor-kappa B (RANK), receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG), all belonging to the Tumor Necrosis Factor (TNF) family. The aims of our study were to investigate: the MM T cell involvement in osteoclastogenesis, and the expression of the major osteoclastogenic mediators. Unstimulated and unfractionated peripheral blood mononuclear cells (PBMCs) isolated from 32 MM patients with or without osteolytic bone lesions, and parallel T cell-depleted cultures were used as in vitro osteoclastogenesis models. In addition, unstimulated and unfractionated PBMC cultures from 32 controls with nonneoplastic disease without any skeletal involvement were also established. Our results showed that the OCs derived from MM-bone disease PBMCs spontaneously developed and displayed a longer survival in a T cell-dependent way. Differently in T cell-depleted MM PBMC cultures, the addition of macrophage-colony stimulating factor (M-CSF) and RANKL was necessary to promote the formation of OCs, that however did not exibit a longer survival. MM-bone disease T cells overexpressed RANKL, OPG and TNF-related apoptosis inducing ligand (TRAIL), also detected in large amounts in the culture media. Despite high OPG levels, the persistence of osteoclastogenesis in our system can be related to the interaction between OPG and TRAIL, that were coimmunoprecipitated by a monoclonal antibody (mAb) against TRAIL. The evidence that TRAIL binds to OPG blocking OPG anti-osteoclastogenic effect is also supported by the addition of different concentrations of functional anti-TRAIL mAb, significantly decreasing the OC formation. The OCs developed from MM-bone disease PBMCs expressed a T cell-modulated balance of death and decoy TRAIL receptors. In particular, we found these OCs overexpressed TRAIL decoy receptor DcR2 in the presence of T cells, and death receptor DR4 in the T cell-depleted cultures. In conclusion, our results highlight that MM-bone disease T cells support the spontaneous OC formation with longer survival, involving the OPG/TRAIL interaction and the unbalanced OC expression of TRAIL death and decoy receptors.


2001 ◽  
Vol 170 (1) ◽  
pp. 175-183 ◽  
Author(s):  
T Kukita ◽  
A Kukita ◽  
T Watanabe ◽  
T Iijima

Although calcitonin has been clinically utilized as a primary treatment for several metabolic bone diseases, its inhibitory effects against osteoclastic function diminish after several days owing to the calcitonin 'escape phenomenon'. We have previously found a unique cell-surface antigen (Kat1-antigen) expressed on rat osteoclasts. Here we show evidence that, in the presence of calcitonin, the Kat1-antigen is involved in osteoclastogenesis. Treatment of bone marrow cultures for forming osteoclast-like cells with anti-Kat1-antigen monoclonal antibody (mAb Kat1) provoked a marked stimulation of osteoclast-like cell formation only in the presence of calcitonin but not in its absence. Osteoclastogenesis stimulated by the receptor activator of nuclear factor kappa B (NF-kappaB) ligand/osteoclast differentiation factor was further augmented by mAb Kat1 in the presence of calcitonin. Furthermore, even in the presence of the osteoprotegerin/osteoclast inhibitory factor, mAb Kat1 induced osteoclast-like cell formation. Our current data suggest that the Kat1-antigen is a molecule that is distinct from receptor activator of NF-kappaB. The presence of the unique Kat1-antigen on cells in the osteoclast lineage appears to contribute to the fine regulation of osteoclastogenesis in vivo. Expression of this cell-surface molecule in cells in the osteoclast lineage may partly explain the mechanism responsible for the escape phenomenon.


Sign in / Sign up

Export Citation Format

Share Document