Effect of Storage Techniques on Blood Lactate Concentration and Determination of Various Lactate Threshold Definitions

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S514
Author(s):  
Matthew J. Garver ◽  
Leland J. Nielsen ◽  
Jared M. Dickinson ◽  
Derek S. Campbell ◽  
Charilaos Papadopoulos ◽  
...  
Author(s):  
M.L. Schulman ◽  
J.P. Nurton ◽  
A.J. Guthrie

The most useful diagnostic methods in the initial evaluation of horses with colic assess the morphological and functional status of the gastrointestinal tract and cardiovascular status. This evaluation is best achieved using a combination of clinical and laboratory data. Blood lactate concentration (BL) is one of these variables. BL rises mainly due to poor tissue perfusion and anaerobic glycolysis associated with shock, providing an indicator of both the severity of disease and its prognosis. A hand-held lactate meter, Accusport, provides a rapid (60 seconds), inexpensive dry-chemical-based determination of BL. This trial evaluated the Accusport's ability to provide BL data as an adjunct to the initial clinical evaluation of horses with colic. The accuracy of the Accusport was tested by evaluation of its interchangeability with the benchmark enzymatic kit evaluation of BL in a trial using data collected firstly from 10 clinically normal control horses and subsequently from 48 horses presented with signs of colic. The BL values were recorded together with the clinical variables of heart rate (HR), capillary refill time (CRT), haematocrit (Hct), and pain character and severity on the initial assessment of the colic horses. Information regarding choice of therapeutic management (medical or surgical) and eventual case outcome (full recovery or died/euthanased) was recorded. The Accusport was found to be interchangeable with the enzymatic kit for recording BL values in colic horses with BL <10 mmol/ , which is within the BL range associated with survival. The interchangeability of an additional, laboratory-based wet chemical assay for BL, the Stat 7 was simultaneously evaluated for the colic and control horses. The Stat 7 was found to be interchangeable with the enzymatic kit for BL determination of colic horses. No linear associations between BL values with HR, CRT, Hct or pain assessment were observed. No relationship with either selection of therapeutic method or eventual case outcome was observed. All horses with BL >8 mmol/ died or were euthanased.


1986 ◽  
Vol 60 (1) ◽  
pp. 232-241 ◽  
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
D. A. Schoeller ◽  
T. F. Budinger

Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1–13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.


1996 ◽  
Vol 4 (3) ◽  
pp. 286-296
Author(s):  
Fiona Iredale ◽  
Frank Bell ◽  
Myra Nimmo

Fourteen sedentary 50- to 55-year-old men were exercised to exhaustion using an incremental treadmill protocol. Mean (±SEM) peak oxygen uptake (V̇O2peak) was 40.5 ± 1.19 ml · kg1· min−1, and maximum heart rate was 161 ± 4 beats · min−1. Blood lactate concentration was measured regularly to identify the lactate threshold (oxygen consumption at which blood lactate concentration begins to systematically increase). Threshold occurred at 84 ± 2% of V̇O2peak. The absolute lactate value at threshold was 2.9 ± 0.2 mmol · L−1. On a separate occasion, 6 subjects exercised continuously just below their individual lactate thresholds for 25 min without significantly raising their blood lactate levels from the 10th minute to the 25th. The absolute blood lactate level over the last 20 min of the steady-state test averaged 3.7 ± 1.2 mmol · L−1. This value is higher than that elicited at the threshold in the incremental test because of the differing nature of the protocols. It was concluded that although the lactate threshold occurs at a high percentage of V̇O2peak, subjects are still able to sustain exercise at that intensity for 25 min.


2015 ◽  
Vol 45 (1) ◽  
pp. 217-224 ◽  
Author(s):  
José Luiz Dantas ◽  
Christian Doria

Abstract Incremental tests on a treadmill are used to evaluate endurance athletes; however, no criterion exists to determine the intensity at which to start the test, potentially causing the loss of the first lactate threshold. This study aimed to determine the ideal speed for runners to start incremental treadmill tests. The study consisted of 94 runners who self-reported the average speed from their last competitive race (10-42.195 km) and performed an incremental test on a treadmill. The speeds used during the first three test stages were normalised in percentages of average competition speed and blood lactate concentration was analysed at the end of each stage. The relationship between speed in each stage and blood lactate concentration was analysed. In the first stage, at an intensity corresponding to 70% of the reported average race speed, only one volunteer had blood lactate concentration equal to 2 mmol·L-1, and in the third stage (90% of the average race speed) the majority of the volunteers had blood lactate concentration ≥2 mmol·L-1. Our results demonstrated that 70% of the average speed from the subject’s last competitive race - from 10 to 42.195 km - was the best option for obtaining blood lactate concentration <2 mmol·L-1 in the first stage, however, 80% of the average speed in marathons may be a possibility. Evaluators can use 70% of the average speed in competitive races as a strategy to ensure that the aerobic threshold intensity is not achieved during the first stage of incremental treadmill tests.


1997 ◽  
Vol 5 (1) ◽  
pp. 39-49 ◽  
Author(s):  
K. Fiona Iredale ◽  
Myra A. Nimmo

Thirty-three men (age 26–55 years) who did not exercise regularly were exercised to exhaustion using an incremental treadmill protocol. Blood lactate concentration was measured to identify lactate threshold (LT, oxygen consumption at which blood lactate concentration begins to systematically increase). The correlation coefficient for LT (ml · kg−1 · min−1) with age was not significant, but when LT was expressed as a percentage of peak oxygen consumption (VO2 peak), the correlation was r = +.69 (p < .01). This was despite a lack of significant correlation between age and VO2 peak (r = −.33). The correlation between reserve capacity (the difference between VO2 peak and LT) and age was r = −.73 (p < .01 ), and reserve capacity decreased at a rate of 3.1 ml · kg−1 · min−1 per decade. It was concluded that the percentage of VO2 peak at which LT occurs increases progressively with age, with a resultant decrease in reserve capacity.


1985 ◽  
Vol 59 (3) ◽  
pp. 853-859 ◽  
Author(s):  
E. F. Coyle ◽  
W. H. Martin ◽  
S. A. Bloomfield ◽  
O. H. Lowry ◽  
J. O. Holloszy

Seven endurance-trained subjects were studied 12, 21, 56, and 84 days after cessation of training. Heart rate, ventilation, respiratory exchange ratio, and blood lactate concentration during submaximal exercise of the same absolute intensity increased (P less than 0.05) progressively during the first 56 days of detraining, after which a stabilization occurred. These changes paralleled a 40% decline (P less than 0.001) in mitochondrial enzyme activity levels and a 21% increase in total lactate dehydrogenase (LDH) activity (P less than 0.05) in trained skeletal muscle. After 84 days of detraining, the experimental subjects' muscle mitochondrial enzyme levels were still 50% above, and LDH activity was 22% below, sedentary control levels. The blood lactate threshold of the detrained subjects occurred at higher absolute and relative (i.e., 75 +/- 2% vs. 62 +/- 3% of maximal O2 uptake) exercise intensities in the subjects after 84 days of detraining than in untrained controls (P less than 0.05). Thus it appears that a portion of the adaptation to prolonged and intense endurance training that is responsible for the higher lactate threshold in the trained state persists for a long time (greater than 85 days) after training is stopped.


2015 ◽  
Vol 134 (3) ◽  
pp. 193-198 ◽  
Author(s):  
Tiago Lazzaretti Fernandes ◽  
Rômulo dos Santos Sobreira Nunes ◽  
Cesar Cavinato Cal Abad ◽  
Andrea Clemente Baptista Silva ◽  
Larissa Silva Souza ◽  
...  

ABSTRACT CONTEXT AND OBJECTIVE: This study aimed to evaluate different mathematical post-analysis methods of determining lactate threshold in highly and lowly trained endurance runners. DESIGN AND SETTING: Experimental laboratory study, in a tertiary-level public university hospital. METHOD: Twenty-seven male endurance runners were divided into two training load groups: lowly trained (frequency < 4 times per week, < 6 consecutive months, training velocity ≥ 5.0 min/km) and highly trained (frequency ≥ 4 times per week, ≥ 6 consecutive months, training velocity < 5.0 min/km). The subjects performed an incremental treadmill protocol, with 1 km/h increases at each subsequent 4-minute stage. Fingerprint blood-lactate analysis was performed at the end of each stage. The lactate threshold (i.e. the running velocity at which blood lactate levels began to exponentially increase) was measured using three different methods: increase in blood lactate of 1 mmol/l at stages (DT1), absolute 4 mmol/l blood lactate concentration (4 mmol), and the semi-log method (semi-log). ANOVA was used to compare different lactate threshold methods and training groups. RESULTS: Highly trained athletes showed significantly greater lactate thresholds than lowly trained runners, regardless of the calculation method used. When all the subject data were combined, DT1 and semi-log were not different, while 4 mmol was significantly lower than the other two methods. These same trends were observed when comparing lactate threshold methods in the lowly trained group. However, 4 mmol was only significantly lower than DT1 in the highly trained group. CONCLUSION: The 4 mmol protocol did not show lactate threshold measurements comparable with DT1 and semi-log protocols among lowly trained athletes.


2020 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Cristian Ieno ◽  
Roberto Baldassarre ◽  
Claudio Quagliarotti ◽  
Marco Bonifazi ◽  
Maria Francesca Piacentini

This study aims to assess the correspondence between session rating of perceived exertion (sRPE) breakpoints with both the first lactate threshold (LT1) and the second lactate threshold (LT2) in elite open water swimmers (OWS). Six elite OWS of the National Olympic Team specialized in distances between 5 and 25 km participated to the study. OWS performed a set of 6 times 500 m incremental swimming step test during which blood lactate concentration (BLC), split time (ST), stroke frequency (SF), and rating of perceived exertion (RPE) were collected. To assess the corresponding breakpoints, we considered LT1 as the highest workload not associated with rise in BLC and LT2 as the increase of 2mM above LT1. According to the LT1 and LT2, the identified zones were: Z1 ≤3, Z2 between 4 and 6, Z3 ≥ 7. In conclusion, the intensity zones determined for OWS resulted different from what previously reported for other endurance disciplines.


Author(s):  
Ibai Garcia-Tabar ◽  
Aitor Iturricastillo ◽  
Julen Castellano ◽  
Eduardo L. Cadore ◽  
Mikel Izquierdo ◽  
...  

Purpose: To develop gender-specific operational equations for prediction of cardiorespiratory fitness in female footballers. Method: Forty-eight semiprofessional female footballers performed an intermittent progressive maximal running test for determination of fixed blood lactate concentration (FBLC) thresholds. Relationships between FBLC thresholds and the physiological responses to submaximal running were examined. Developed equations (n = 48) were compared with equations previously obtained in another investigation performed in males (n = 100). Results: Submaximal velocity associated with 90% maximal heart rate was related to FBLC thresholds (r = .76 to .79; P < .001). Predictive power (R2 = .82 to .94) of a single blood lactate concentration (BLC) sample measured at 10 or 11.5 km·h−1 was very high. A single BLC sample taken after a 5-minute running bout at 8.5 km·h−1 was related to FBLC thresholds (r = −.71; P < .001). No difference (P = .15) in the regression lines predicting FBLC thresholds from velocity associated with 90% maximal heart rate was observed between the female and male cohorts. However, regressions estimating FBLC thresholds by a single BLC sample were different (P = .002). Conclusions: Velocity associated with 90% maximal heart rate was robustly related to FBLC thresholds and might serve for mass field testing independently of sex. BLC equations accurately predicted FBLC thresholds. However, these equations are gender-specific. This is the first study reporting operational equations to estimate the FBLC thresholds in female footballers. The use of these equations reduces the burden associated with cardiorespiratory testing. Further cross-validation studies are warranted to validate the proposed equations and establish them for mass field testing.


Kinesiology ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 3-11
Author(s):  
Uroš Mohorič ◽  
Marko Šibila ◽  
Boro Štrumbelj

The purpose of the study was to assess assumed differences in some physiological parameters, obtained by an incremental intermittent running field test 30–15IFT, among elite handball players to get an insight into the specifics of aerobic capacity profiles of players in different playing positions. Twenty-four elite male handball players were tested using the Cosmed K4 portable telemetry system. The following parameters were analysed: running velocity, heart rate, oxygen uptake, relative oxygen uptake, pulmonary ventilation breath-by-breath, at the three points—lactate threshold (LT), onset of blood lactate accumulation (OBLA), and at the peak velocity achieved on the test (v30–15IFT). Additionally, blood lactate concentration was analysed at v30–15IFT. The players were divided in three groups based on their playing positions: eight backcourt players, eight wing players and eight pivot players. In terms of both the statistically significant and non-significant differences, the wings achieved slightly different results in comparison to the backcourt players and pivots. The wings reached a statistically significant higher velocity at the LT than the players of the other two groups and a significantly higher velocity than the pivots at the OBLA. At all the three points, wings presented the highest HR values, meaning they can operate at higher intensities still within the aerobic work zone. This would probably allow wing players to longer persist in handball game.


Sign in / Sign up

Export Citation Format

Share Document