A Single Bout of Aerobic Exercise Improves Goal Maintenance during a Cognitive Control Task

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 258
Author(s):  
Mark R. Scudder ◽  
Drollette S. Eric ◽  
Matthew B. Pontifex ◽  
Charles H. Hillman
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242270
Author(s):  
Maximilian Bergelt ◽  
Vanessa Fung Yuan ◽  
Richard O’Brien ◽  
Laura E. Middleton ◽  
Wellington Martins dos Santos

Background Evidence suggests a single bout of exercise can improve cognitive control. However, many studies only include assessments after exercise. It is unclear whether exercise changes as a result, or in anticipation, of exercise. Objective To examine changes in cognitive control due to moderate aerobic exercise, and anticipation of such exercise. Methods Thirty-one young healthy adults (mean age 22 years; 55% women) completed three conditions (randomized order): 1) exercise (participants anticipated and completed exercise); 2) anticipation (participants anticipated exercise but completed rest); and 3) rest (participants anticipated and completed rest). Cognitive control was assessed with a modified Flanker task at three timepoints: (1) early (20 min pre-intervention, pre-reveal in anticipation session); (2) pre-intervention (after reveal); and (3) post-intervention. An accuracy-weighted response time (RTLISAS) was the primary outcome, analyzed with a linear mixed effects modeling approach. Results There was an interaction between condition and time (p = 0.003) and between session and time (p = 0.015). RTLISAS was better post-exercise than post-rest and post-deception, but was similar across conditions at other timepoints. RTLISAS improved across time in session 1 and session 2, but did not improve over time in session 3. There were also main effects of condition (p = 0.024), session (p = 0.005), time (p<0.001), and congruency (p<0.001). Conclusions Cognitive control improved after moderate aerobic exercise, but not in anticipation of exercise. Improvements on a Flanker task were also observed across sessions and time, indicative of a learning effect that should be considered in study design and analyses.


2020 ◽  
Author(s):  
Amandine Lassalle ◽  
Michael X Cohen ◽  
Laura Dekkers ◽  
Elizabeth Milne ◽  
Rasa Gulbinaite ◽  
...  

Background: People with an Autism Spectrum Condition diagnosis (ASD) are hypothesized to show atypical neural dynamics, reflecting differences in neural structure and function. However, previous results regarding neural dynamics in autistic individuals have not converged on a single pattern of differences. It is possible that the differences are cognitive-set-specific, and we therefore measured EEG in autistic individuals and matched controls during three different cognitive states: resting, visual perception, and cognitive control.Methods: Young adults with and without an ASD (N=17 in each group) matched on age (range 20 to 30 years), sex, and estimated Intelligence Quotient (IQ) were recruited. We measured their behavior and their EEG during rest, a task requiring low-level visual perception of gratings of varying spatial frequency, and the “Simon task” to elicit activity in the executive control network. We computed EEG power and Inter-Site Phase Clustering (ISPC; a measure of connectivity) in various frequency bands.Results: During rest, there were no ASD vs. controls differences in EEG power, suggesting typical oscillation power at baseline. During visual processing, without pre-baseline normalization, we found decreased broadband EEG power in ASD vs. controls, but this was not the case during the cognitive control task. Furthermore, the behavioral results of the cognitive control task suggest that autistic adults were better able to ignore irrelevant stimuli.Conclusions: Together, our results defy a simple explanation of overall differences between ASD and controls, and instead suggest a more nuanced pattern of altered neural dynamics that depend on which neural networks are engaged.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anisa Morava ◽  
Matthew James Fagan ◽  
Harry Prapavessis

AbstractStudies show that a single bout of exercise confers cognitive benefits. However, many individuals use psychoactive substances such as caffeine to enhance cognitive performance. The effects of acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal symptoms also remains unknown. The objectives of this study were to compare the effects of acute moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and reduced CWS comparably. WM performance was not reduced following caffeine deprivation.


2014 ◽  
Vol 29 (6) ◽  
pp. 575-575
Author(s):  
A. Katz ◽  
I. Chui ◽  
M. Powell ◽  
G. Varuzza ◽  
J. Gold ◽  
...  

2020 ◽  
pp. 1-11 ◽  
Author(s):  
C. J. Brush ◽  
Greg Hajcak ◽  
Anthony J. Bocchine ◽  
Andrew A. Ude ◽  
Kristina M. Muniz ◽  
...  

Abstract Background Aerobic exercise has demonstrated antidepressant efficacy among adults with major depression. There is a poor understanding of the neural mechanisms associated with these effects. Deficits in reward processing and cognitive control may be two candidate targets and predictors of treatment outcome to exercise in depression. Methods Sixty-six young adults aged 20.23 years (s.d. = 2.39) with major depression were randomized to 8 weeks of moderate-intensity aerobic exercise (n = 35) or light stretching (n = 31). Depressive symptoms were assessed across the intervention to track symptom reduction. Reward processing [reward positivity (RewP)] and cognitive control [error-related negativity (ERN)] were assessed before and after the intervention using event-related brain potentials. Results Compared to stretching, aerobic exercise resulted in greater symptom reduction (gs = 0.66). Aerobic exercise had no impact on the RewP (gav = 0.08) or ERN (gav = 0.21). In the aerobic exercise group, individuals with a larger pre-treatment RewP [odds ratio (OR) = 1.45] and increased baseline depressive symptom severity (OR = 1.18) were more likely to respond to an aerobic exercise program. Pre-treatment ERN did not predict response (OR = 0.74). Conclusions Aerobic exercise is effective in alleviating depressive symptoms in adults with major depression, particularly for those with increased depressive symptom severity and a larger RewP at baseline. Although aerobic exercise did not modify the RewP or ERN, there is preliminary support for the utility of the RewP in predicting who is most likely to respond to exercise as a treatment for depression.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 42
Author(s):  
Tommy Lundberg ◽  
Rodrigo Fernandez-Gonzalo ◽  
Thomas Gustafsson ◽  
Per A. Tesch

2007 ◽  
Vol 18 (5) ◽  
pp. 1010-1028 ◽  
Author(s):  
Jessica L. Paxton ◽  
Deanna M. Barch ◽  
Caroline A. Racine ◽  
Todd S. Braver

Sign in / Sign up

Export Citation Format

Share Document