A Single Bout of Aerobic Exercise Compromises Down-regulation of MuRF Expression Subsequent to Resistance Exercise

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 42
Author(s):  
Tommy Lundberg ◽  
Rodrigo Fernandez-Gonzalo ◽  
Thomas Gustafsson ◽  
Per A. Tesch
2008 ◽  
Vol 116 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Yiannis E. Tsekouras ◽  
Faidon Magkos ◽  
Konstantinos I. Prentzas ◽  
Konstantinos N. Basioukas ◽  
Stergoula G. Matsama ◽  
...  

A single bout of prolonged aerobic exercise lowers plasma TAG (triacylglycerol) concentrations the next day by increasing the efficiency of VLDL (very-low-density lipoprotein)-TAG removal from the circulation. The effect of resistance exercise on VLDL-TAG metabolism is not known. Therefore we evaluated VLDL-TAG kinetics by using stable isotope-labelled tracers in eight healthy untrained men (age, 25.3±0.8 years; body mass index, 24.5±0.6 kg/m2) in the post-absorptive state in the morning on two separate occasions: once after performing a single 90-min bout of strenuous isokinetic resistance exercise (three sets×ten repetitions, 12 exercises at 80% of maximum peak torque production, with a 2-min rest interval between exercises) on the preceding afternoon and once after an equivalent period of rest. Fasting plasma VLDL-TAG concentrations in the morning after exercise were significantly lower than in the morning after rest (0.23±0.04 compared with 0.33±0.06 mmol/l respectively; P=0.001). Hepatic VLDL-TAG secretion rate was not different (P=0.31), but plasma clearance rate of VLDL-TAG was significantly higher (by 26±8%) after exercise than rest (31±3 compared with 25±3 ml/min respectively; P=0.004), and the mean residence time of VLDL-TAG in the circulation was significantly shorter (113±10 compared with 144±18 min respectively; P=0.02). Fasting plasma NEFA (non-esterified fatty acid; ‘free’ fatty acid) and serum β-hydroxybutyrate concentrations were both significantly higher after exercise than rest (P<0.05), whereas plasma glucose and serum insulin concentrations were not different (P>0.30). We conclude that, in healthy untrained men, a single bout of whole-body resistance exercise lowers fasting plasma VLDL-TAG concentrations by augmenting VLDL-TAG removal from plasma. The effect appears to be qualitatively and quantitatively similar to that reported previously for aerobic exercise.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anisa Morava ◽  
Matthew James Fagan ◽  
Harry Prapavessis

AbstractStudies show that a single bout of exercise confers cognitive benefits. However, many individuals use psychoactive substances such as caffeine to enhance cognitive performance. The effects of acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal symptoms also remains unknown. The objectives of this study were to compare the effects of acute moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and reduced CWS comparably. WM performance was not reduced following caffeine deprivation.


2002 ◽  
Vol 93 (1) ◽  
pp. 394-403 ◽  
Author(s):  
Fadia Haddad ◽  
Gregory R. Adams

Training protocols apply sequential bouts of resistance exercise (RE) to induce the cellular and molecular responses necessary to produce compensatory hypertrophy. This study was designed to 1) define the time course of selected cellular and molecular responses to a single bout of RE and 2) examine the effects of interbout rest intervals on the summation of these responses. Rat muscles were exposed to RE via stimulation of the sciatic nerve in vivo. Stimulated and control muscles were obtained at various time points post-RE and analyzed via Western blot and RT-PCR. A single bout of RE increased intracellular signaling (i.e., phosphorylations) and expression of mRNAs for insulin-like growth factor-I system components and myogenic markers (e.g., cyclin D1, myogenin). A rest interval of 48 h between RE bouts resulted in much greater summation of myogenic responses than 24- or 8-h rest intervals. This experimental approach should be useful for studying the regulatory mechanisms that control the hypertrophy response. These methods could also be used to compare and contrast different exercise parameters (e.g., concentric vs. eccentric, etc.).


2014 ◽  
Vol 19 (2) ◽  
pp. 64-71 ◽  
Author(s):  
Lausanne B.C.C. Rodrigues ◽  
Cláudia L.M. Forjaz ◽  
Aluísio H.R.A. Lima ◽  
Alessandra S. Miranda ◽  
Sérgio L.C. Rodrigues ◽  
...  

2021 ◽  
Vol 130 (4) ◽  
pp. 1085-1092
Author(s):  
Giuseppe Caminiti ◽  
Ferdinando Iellamo ◽  
Annalisa Mancuso ◽  
Anna Cerrito ◽  
Matteo Montano ◽  
...  

Combined exercise training (CT) including aerobic plus resistance exercises could be more effective in comparison with aerobic exercise (AT) alone in reducing blood pressure variability (BPV) in hypertensive patients. We report that CT was indeed more effective than AT in reducing short-term BPV, and both exercise modalities reduced BP levels to the same extent. CT appears to be a more appropriate exercise modality if the objective is to reduce BPV in addition to BP levels.


Author(s):  
Feng Li-Li ◽  
Li Bo-Wen ◽  
Xi Yue ◽  
Tian Zhen-Jun ◽  
Cai Meng-Xin

Objectives: Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. Materials and Methods: Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. Conclusion: AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document