Macroprolactin; high molecular mass forms of circulating prolactin

Author(s):  
M N Fahie-Wilson ◽  
R John ◽  
A R Ellis

Two high molecular mass forms of prolactin (PRL) in serum have been identified by gel filtration chromatography (GFC): macroprolactin (big-big PRL, > 100 kDa) and big PRL (40-60 kDa). Macroprolactin has a variable composition and structure, but is most frequently a complex of PRL and IgG, with a molecular mass of 150-170 kDa. It is formed in the circulation following pituitary secretion of monomeric PRL but has a longer half-life, and the PRL in the complex remains reactive to a variable extent in immunoassays. In the majority of subjects little or no macroprolactin can be detected in serum, but in some individuals it may be the predominant immunoreactive component of circulating PRL and the cause of apparent hyperprolactinaemia. Owing to its high molecular mass, macroprolactin appears to be confined to the intravascular compartment and much evidence indicates that it has minimal bioactivity in vivo and is not of pathological significance. Nevertheless, hyperprolactinaemia due to macroprolactin can lead to diagnostic confusion and unnecessary further investigation and treatment if it is not recognized as such. Macroprolactin is a common cause of apparent hyperprolactinaemia with some assays and it is essential that laboratories introduce screening programmes to examine samples with elevated total immunoreactive PRL for the presence of macroprolactin and determine the monomeric PRL component which is known to be bioactive in vivo. A number of screening tests have been described; that based on the precipitation of macroprolactin with polyethylene glycol has been the most widely validated and applied. The reference technique of GFC should be available for confirmation and further investigation of samples, giving equivocal results in screening tests. In comparison with macroprolactin, little is known about big PRL. It is a more consistent component of total serum PRL but rarely, if ever, the cause of hyperprolactinaemia. Further research is required into the nature of macroprolactin and big PRL, the relationships between high molecular mass forms of PRL, and their clinical significance.

2006 ◽  
Vol 400 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Nick Sirijovski ◽  
Ulf Olsson ◽  
Joakim Lundqvist ◽  
Salam Al-Karadaghi ◽  
Robert D. Willows ◽  
...  

Magnesium chelatase inserts Mg2+ into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. It is a heterotrimeric enzyme, composed of I- (40 kDa), D- (70 kDa) and H- (140 kDa) subunits. The I- and D-proteins belong to the family of AAA+ (ATPases associated with various cellular activities), but only I-subunit hydrolyses ATP to ADP. The D-subunits provide a platform for the assembly of the I-subunits, which results in a two-tiered hexameric ring complex. However, the D-subunits are unstable in the chloroplast unless ATPase active I-subunits are present. The H-subunit binds protoporphyrin and is suggested to be the catalytic subunit. Previous studies have indicated that the H-subunit also has ATPase activity, which is in accordance with an earlier suggested two-stage mechanism of the reaction. In the present study, we demonstrate that gel filtration chromatography of affinity-purified Rhodobacter capsulatus H-subunit produced in Escherichia coli generates a high- and a low-molecular-mass fraction. Both fractions were dominated by the H-subunit, but the ATPase activity was only found in the high-molecular-mass fraction and magnesium chelatase activity was only associated with the low-molecular-mass fraction. We demonstrated that light converted monomeric low-molecular-mass H-subunit into high-molecular-mass aggregates. We conclude that ATP utilization by magnesium chelatase is solely connected to the I-subunit and suggest that a contaminating E. coli protein, which binds to aggregates of the H-subunit, caused the previously reported ATPase activity of the H-subunit.


2000 ◽  
Vol 345 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Bruno ANTONSSON ◽  
Sylvie MONTESSUIT ◽  
Sandra LAUPER ◽  
Robert ESKES ◽  
Jean-Claude MARTINOU

Bax is a Bcl-2-family protein with pro-apoptotic activity that can form channels in lipid membranes. The protein has been shown to trigger cytochrome c release from mitochondria both in vitro and in vivo. Recombinant human Bax isolated in the presence of detergent was found to be present as an oligomer with an apparent molecular mass of approx. 160000 Da on gel filtration. When Bax was isolated in the absence of detergent the purified protein was monomeric with an apparent molecular mass of 22000 Da. Bax oligomers formed channels in liposomes and triggered cytochrome c release from isolated mitochondria, whereas monomeric Bax was inactive in both respects. Incubation of the monomeric Bax with 2% octyl glucoside induced formation of oligomers that displayed channel-forming activity in liposomes and triggered cytochrome c release from mitochondria. Triton X-100, Nonidet P-40 and n-dedecyl maltoside also activated monomeric Bax, whereas CHAPS had no activating effect. In cytosolic extracts from mouse liver, Bax migrated at a molecular mass of 24000 Da on gel filtration, whereas after incubation of the cytosol with 2% octyl glucoside Bax migrated at approximately 140000 Da. These results show that oligomeric Bax possesses channel-forming activity whereas monomeric Bax has no such activity.


2020 ◽  
Author(s):  
GD BONNETT ◽  
Ian Sims ◽  
JA ST. JOHN ◽  
RJ SIMPSON

Fructan pentasaccharides were purified, in quantities suitable for use as substrates for enzyme assays, from Neosugar‐p‐(Meijj Seika Kaisha Ltd. Japan), tubers of Helianthus tuberosus L., L., and stems and leaf sheaths of Triticum aestivum L by a combination of gel‐filtration and RP‐HPLC. Fructan of higher molecular mass (mean DP = 30) was purified from Leaves of Lolium rigidum Gaud, that had been induced to accumulate fructan and characterized along; with the commercially available fructan from Cichorium intybus L. (Sigma, St Louis, USA) (mean DP = 33). The fructan pentasaccharide purified from H. tuberosus was found to contain exclusively 2, 1‐linked fructose and terminal fructose and terminal glucose, and was identified as (1, 1, 1)‐kestopentatise. The fructan pentasaccharide purified from Neosugar‐P also contained (1,1,1)‐kestopentaose. although the presence of fructan Klinked glucose and 1 % 2, 6‐linked fructose indicated that a small proportion of other kestopentaoses were present, The fructan pentasaccharide purified from T aestivum consisted of almost exclusively 2,6‐linked fructose and terminal glucose and terminal fructose and was considered to contain predominantly (6,6,6)‐kestopentaose. The presence of 1 % 2,1,6)‐linked fructose indicated the sample also contained a small proportion of branched kestopentanse. The high molecular mass fructan from C. intybus was found to comprise linear molecules containing only 2,1‐linked fructose, terminal glucose and terminal fructose‐ High molecular mass fructan from L. rigidum contained predominantly 2. h‐linked fructose, had predominantly internal glucose, indicated by 2 %, 1.6‐linked glucose, low levels of branching, indicated 2 % 2,1,6‐linked fructose residues; and 1% of the residues were 2,1 ‐linked fructose. Copyright © 1994, Wiley Blackwell. All rights reserved


2013 ◽  
Vol 288 (20) ◽  
pp. 14476-14487 ◽  
Author(s):  
Kevin D. Clark ◽  
Michael R. Strand

The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate.


1997 ◽  
Vol 326 (3) ◽  
pp. 853-859 ◽  
Author(s):  
Sergio LIZANO ◽  
Bruno LOMONTE ◽  
Jay W. FOX ◽  
José Maréa GUTIÉRREZ

A protein that neutralizes the biological activities of basic phospholipase A2 (PLA2) myotoxin isoforms from the venom of the snake Bothrops asper was isolated from its blood by affinity chromatography with Sepharose-immobilized myotoxins. Biochemical characterization of this B. asper myotoxin inhibitor protein (BaMIP) indicated a subunit molecular mass of 23–25 kDa, an isoelectric point of 4, and glycosylation. Gel-filtration studies revealed a molecular mass of 120 kDa, suggesting that BaMIP possesses an oligomeric structure composed of five 23–25 kDa subunits. Functional studies indicated that BaMIP inhibits the PLA2 activity of B. asper basic myotoxins I and III, as well as the myotoxicity and edema-forming activity in vivo and cytolytic activity in vitro towards cultured endothelial cells, of all four myotoxin isoforms (I–IV) tested. Sequence analysis of the first 63 amino acid residues from the N-terminus of BaMIP indicated more than 65% sequence similarity to the PLA2 inhibitors isolated from the blood of the crotalid snakes Trimeresurus flavoviridis and Agkistrodon blomhoffii siniticus. These inhibitors also share sequences similar to the carbohydrate-recognition domains of human and rabbit cellular PLA2 receptors, suggesting a common domain evolution among snake plasma PLA2 inhibitors and mammalian PLA2 receptors. Despite this similarity, this is the first description of a natural anti-myotoxic factor from snake blood.


2009 ◽  
Vol 421 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Lin Nan Shen ◽  
Marie-Claude Geoffroy ◽  
Ellis G. Jaffray ◽  
Ronald T. Hay

The modification of proteins by SUMO (small ubiquitin-related modifier) plays important roles in regulating the activity, stability and cellular localization of target proteins. Similar to ubiquitination, SUMO modification is a dynamic process that can be reversed by SENPs [SUMO-1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidases]. To date, six SENPs have been discovered in humans, although knowledge of their regulation, specificity and biological functions is limited. In the present study, we report that SENP7 has a restricted substrate specificity, being unable to process SUMO precursors and displaying paralogue-specific isopeptidase activity. The C-terminal catalytic domain of SENP7 efficiently depolymerized poly-SUMO-2 chains but had undetectable activity against poly-SUMO-1 chains. SENP7 also displayed isopeptidase activity against di-SUMO-2- and SUMO-2-modified RanGAP1 (Ran GTPase-activating protein 1) but had limited activity against SUMO-1-modified RanGAP1. in vivo, full-length SENP7 was localized to the nucleoplasm and preferentially reduced the accumulation of high-molecular-mass conjugates of SUMO-2 and SUMO-3 compared with SUMO-1. Small interfering RNA-mediated ablation of SENP7 expression led to the accumulation of high-molecular-mass SUMO-2 species and to the accumulation of promyelocytic leukaemia protein in subnuclear bodies. These findings suggest that SENP7 acts as a SUMO-2/3-specific protease that is likely to regulate the metabolism of poly-SUMO-2/3 rather than SUMO-1 conjugation in vivo.


2020 ◽  
Author(s):  
GD BONNETT ◽  
Ian Sims ◽  
JA ST. JOHN ◽  
RJ SIMPSON

Fructan pentasaccharides were purified, in quantities suitable for use as substrates for enzyme assays, from Neosugar‐p‐(Meijj Seika Kaisha Ltd. Japan), tubers of Helianthus tuberosus L., L., and stems and leaf sheaths of Triticum aestivum L by a combination of gel‐filtration and RP‐HPLC. Fructan of higher molecular mass (mean DP = 30) was purified from Leaves of Lolium rigidum Gaud, that had been induced to accumulate fructan and characterized along; with the commercially available fructan from Cichorium intybus L. (Sigma, St Louis, USA) (mean DP = 33). The fructan pentasaccharide purified from H. tuberosus was found to contain exclusively 2, 1‐linked fructose and terminal fructose and terminal glucose, and was identified as (1, 1, 1)‐kestopentatise. The fructan pentasaccharide purified from Neosugar‐P also contained (1,1,1)‐kestopentaose. although the presence of fructan Klinked glucose and 1 % 2, 6‐linked fructose indicated that a small proportion of other kestopentaoses were present, The fructan pentasaccharide purified from T aestivum consisted of almost exclusively 2,6‐linked fructose and terminal glucose and terminal fructose and was considered to contain predominantly (6,6,6)‐kestopentaose. The presence of 1 % 2,1,6)‐linked fructose indicated the sample also contained a small proportion of branched kestopentanse. The high molecular mass fructan from C. intybus was found to comprise linear molecules containing only 2,1‐linked fructose, terminal glucose and terminal fructose‐ High molecular mass fructan from L. rigidum contained predominantly 2. h‐linked fructose, had predominantly internal glucose, indicated by 2 %, 1.6‐linked glucose, low levels of branching, indicated 2 % 2,1,6‐linked fructose residues; and 1% of the residues were 2,1 ‐linked fructose. Copyright © 1994, Wiley Blackwell. All rights reserved


1990 ◽  
Vol 271 (1) ◽  
pp. 75-86 ◽  
Author(s):  
J Bielicki ◽  
C Freeman ◽  
P R Clements ◽  
J J Hopwood

Human iduronate-2-sulphatase (EC 3.1.6.13), which is involved in the lysosomal degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate, was purified more than 500,000-fold in 5% yield from liver with a six-step column procedure, which consisted of a concanavalin A-Sepharose-Blue A-agarose coupled step, chromatofocusing, gel filtration on TSK HW 50S-Fractogel, hydrophobic separation on phenyl-Sepharose CL-4B and size separation on TSK G3000SW Ultrapac. Two major forms were identified. Form A and form B, with pI values of 4.5 and less than 4.0 respectively, separated at the chromatofocusing step in approximately equal amounts of recovered enzyme activity. By gel-filtration methods form A had a native molecular mass in the range 42-65 kDa. When analysed by SDS/PAGE, dithioerythritol-reduced and non-reduced form A and form B consistently contained polypeptides of molecular masses 42 kDa and 14 kDa. Iduronate-2-sulphatase was purified from human kidney, placenta and lung, and form A was shown to have similar native molecular mass and subunit components to those observed for liver enzyme. Both forms of liver iduronate-2-sulphatase were active towards a variety of substrates derived from heparin and dermatan sulphate. Kinetic parameters (Km and Kcat) of form A were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparan sulphate, heparin and dermatan sulphate. Substrate with 6-sulphate esters on the aglycone residue adjacent to the iduronic acid 2-sulphate residue being attack were hydrolysed with catalytic efficiencies up to 200 times above that observed for the simplest disaccharide substrate without a 6-sulphated aglycone residue. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure, substrate concentration, buffer type and the presence of other proteins. Sulphate and phosphate ions and a number of substrate and product analogues were potent inhibitor of form A and form B enzyme activities.


2001 ◽  
Vol 21 (14) ◽  
pp. 4604-4613 ◽  
Author(s):  
Gang Wang ◽  
Greg T. Cantin ◽  
Jennitte L. Stevens ◽  
Arnold J. Berk

ABSTRACT A number of mammalian multiprotein complexes containing homologs ofSaccharomyces cerevisiae Mediator subunits have been described recently. High-molecular-mass complexes (1 to 2 MDa) sharing several subunits but apparently differing in others include the TRAP/SMCC, NAT, DRIP, ARC, and human Mediator complexes. Smaller multiprotein complexes (∼500 to 700 kDa), including the murine Mediator, CRSP, and PC2, have also been described that contain subsets of subunits of the larger complexes. To evaluate whether these different multiprotein complexes exist in vivo in a single form or in multiple different forms, HeLa cell nuclear extract was directly resolved over a Superose 6 gel filtration column. Immunoblotting of column fractions using antisera specific for several Mediator subunits revealed one major size class of high-molecular-mass (∼2-MDa) complexes containing multiple mammalian Mediator subunits. No peak was apparent at ∼500 to 700 kDa, indicating that either the smaller complexes reported are much less abundant than the higher-molecular-mass complexes or they are subcomplexes generated by dissociation of larger complexes during purification. Quantitative immunoblotting indicated that there are about 3 × 105to 6 × 105 molecules of hSur2 Mediator subunit per HeLa cell, i.e., the same order of magnitude as RNA polymerase II and general transcription factors. Immunoprecipitation of the ∼2-MDa fraction with anti-Cdk8 antibody indicated that at least two classes of Mediator complexes occur, one containing CDK8 and cyclin C and one lacking this CDK-cyclin pair. The ∼2-MDa complexes stimulated activated transcription in vitro, whereas a 150-kDa fraction containing a subset of Mediator subunits inhibited activated transcription.


Sign in / Sign up

Export Citation Format

Share Document