Matrix metalloproteinases in vascular physiology and disease

Vascular ◽  
2012 ◽  
Vol 20 (4) ◽  
pp. 210-216 ◽  
Author(s):  
Suzanne A Siefert ◽  
Rajabrata Sarkar

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that primarily degrade components of the extracellular matrix (ECM). Remodeling of the ECM by MMPs is important in both physiological and pathological processes, including organ generation/regeneration, angiogenesis, wound healing, inflammation and tumor growth. In the vasculature, MMPs play a role in beneficial processes such as angiogenesis, collateral artery formation and thrombus resolution. However, MMP expression is also implicated in the pathogenesis of vascular diseases such as atherosclerosis, aortic aneurysms, plaque rupture and neointimal hyperplasia after balloon angioplasty. Here, we review the structure, functions and roles of MMPs in both neovascularization and vascular pathology and discuss the potential of, and challenges that face, adapting MMPs as therapeutic targets in vascular disease.

2020 ◽  
Vol 134 (17) ◽  
pp. 2399-2418
Author(s):  
Yoshito Yamashiro ◽  
Hiromi Yanagisawa

Abstract Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix–cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell–cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)—both of which activate several key transcription factors. Finally, we provide a recent overview of matrix–cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.


2019 ◽  
Vol 70 (2) ◽  
pp. 718-720
Author(s):  
Lucia Corina Dima-Cozma ◽  
Sebastian Cozma ◽  
Delia Hinganu ◽  
Cristina Mihaela Ghiciuc ◽  
Florin Mitu

Matrix metalloproteinases (MMPs) are the primary mediators of extracellular remodeling and their properties are useful in diagnostic evaluation and treatment. They are zinc-dependent proteases. MMPs have been involved in the mechanisms of atherosclerosis in various arterial areas, ischemic heart disease and myocardial infarction, atrial fibrillation and aortic aneurysms. Recently, MMP9 has been implicated in dyslipidemia and cholesterol synthesis by the liver. Increased MMP expression and activity has been associated with neointimal arterial lesions and migration of smooth muscle cells after arterial balloon dilation, while MMP inhibition decreases smooth muscle cell migration in vivo and in vitro.


2018 ◽  
Vol 25 (15) ◽  
pp. 1805-1816 ◽  
Author(s):  
Shifa Narula ◽  
Chanderdeep Tandon ◽  
Simran Tandon

Matrix metalloproteinases (MMPs) are members of calcium dependent-zinc containing endopeptidases that play a pivotal role in extracellular matrix (ECM) remodeling. MMPs are also known to cleave non-matrix proteins, including cell surface receptors, TNF-α, angiotensin-II, growth factors, (especially transforming growth factor-β1, ΤGF- β1) plasminogen, endothelin and other bioactive molecules. The tissue inhibitors of metalloproteinases (TIMPs) inhibit the activity of MMPs and decrease ECM degradation. Various patho-physiological conditions have been linked with the imbalance of ECM synthesis and degradation. Numerous studies have reported the significance of MMPs and TIMPs in the progression of kidney pathologies, including glomerulonephritis, diabetic nephropathy, renal cancer, and nephrolithiasis. Although dysregulated activity of MMPs could directly or indirectly lead to pathological morbidities, their contribution in disease progression is still understated. Specifically, MMP activity in the kidneys and it's relation to kidney diseases has been the subject of a limited number of investigations. Therefore, the aim of the present review is to provide an updated insight of the involvement of MMPs and TIMPs in the pathogenesis of inflammatory and degenerative kidney disorders.


2001 ◽  
Vol 12 (5) ◽  
pp. 373-398 ◽  
Author(s):  
Bjorn Steffensen ◽  
Lari Häkkinen ◽  
Hannu Larjava

During wound-healing, cells are required to migrate rapidly into the wound site via a proteolytically generated pathway in the provisional matrix, to produce new extracellular matrix, and, subsequently, to remodel the newly formed tissue matrix during the maturation phase. Two classes of molecules cooperate closely to achieve this goal, namely, the matrix adhesion and signaling receptors, the integrins, and matrix-degrading and -processing enzymes, the matrix metalloproteinases (MMPs). There is now substantial experimental evidence that blocking key molecules of either group will prevent or seriously delay wound-healing. It has been known for some time now that cell adhesion by means of the integrins regulates the expression of MMPs. In addition, certain MMPs can bind to integrins or other receptors on the cell surface involved in enzyme activation, thereby providing a mechanism for localized matrix degradation. By proteolytically modifying the existing matrix molecules, the MMPs can then induce changes in cell behavior and function from a state of rest to migration. During wound repair, the expression of integrins and MMPs is simultaneously up-regulated. This review will focus on those aspects of the extensive knowledge of fibroblast and keratinocyte MMPs and integrins in biological processes that relate to wound-healing.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Natalia Bogatcheva ◽  
Sarvesh Chelvanambi ◽  
Xingjuan Chen ◽  
Alexander Obukhov ◽  
Matthias Clauss

Introduction: HIV patients on ART perplexingly remain at higher risk for developing cardiovascular diseases including acute peripheral arterial disease and pulmonary hypertension. A likely culprit for observed vascular changes is HIV protein Nef, detected both intracellularly and extracellularly in the absence of HIV RNA or DNA. Nef is known to induce endothelial dysfunction through the activation of NADPH; statins are known to inhibit NADPH activation. Hypothesis: Nef expression in endothelial cells will trigger cardiopulmonary and vascular pathology; Nef effects will be reversed by statin. Methods: Endothelial-specific expression of HIV-Nef was achieved by mating the VE-Cadherin-Tet off mice with TRE-Nef mice. The resulting Nef+ double transgenics and their Nef- negative littermates were maintained without doxycycline to induce Nef expression. Changes in pulmonary acceleration and ejection times were analyzed by ultrasound (INVEVO2100). Additionally, we assessed the ability of bradykinin-preconstricted aortic rings to dilate in response to acetylcholine in NO-dependent manner. Results: Between week 10 and week 13 of age, Nef expressing mice displayed gradual reduction of PAT/PET ratio (down to the 75% of the original PAT/PET ratio at week 10), indicative of developing pulmonary hypertension (N=6). PAT/PET ratio in Nef-negative mice did not change significantly between week 10 and 13 of age. Importantly, statin treatment initiated at week 10 completely suppressed PAT/PET changes developing in Nef-expressing mice. Arterial rings from Nef expressing mice (n=4) showed significantly impaired dilatation in response to acetylcholine (10% relaxation in Nef+ mice vs 40% relaxation in Nef-negative littermates, p=0.03), indicative of changes in systemic circulation. This difference was significantly attenuated in Nef+ mice receiving statin treatment. Conclusions: Our data suggests that mice with endothelial expression of HIV-Nef display pathological changes in pulmonary and systemic circulation. Statin treatment significantly attenuates changes in parameters indicative of pulmonary and systemic hypertension, suggesting that statin will be beneficial for patients with HIV-induced cardiopulmonary and vascular diseases.


Author(s):  
O.M. Stanishevskaya ◽  
◽  
M.A. Safronova ◽  
G.V. Bratko ◽  
I.Y. Efremova ◽  
...  

Disorders of hemostasis occupy an important place in the structure of vascular diseases and are one of the most frequent pathological conditions encountered in practical medicine. The hemostasis system is naturally the most vulnerable system of the body. Violations of its balance are found in a wide variety of physiological and pathological conditions of the body. It is not uncommon for the first debut of decompensation to lead to an ophthalmologist. In the practice of an ophthalmologist, there are diseases when it is necessary to pay close attention to thrombophilic conditions. Changes in the hemostatic system, affect a wide range of vascular diseases of the eyeball. Recognition of the type of thrombophilia and its timely laboratory diagnosis in patients with vascular diseases of the retina and optic nerve are important in achieving the best treatment results. Multidisciplinary approach to the treatment of vascular diseases of the eyeball and modern diagnostics, including the study of hemostasis, is necessary and relevant to achieve the best clinical and functional treatment result. Timely and correct orientation of patients in vascular pathology is extremely important due to the fact that concomitant systemic pathology can aggravate the course of the disease, therefore, the choice of treatment tactics for this category of patients should be carried out in conjunction with a therapist, cardiologist, hematologist and endocrinologist. Key words: hemostasis, thrombosis CVS, diabet, primary open-angle glaucoma thrombodynamica, cardiovascular pathology.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
A. Phillip Owens ◽  
Deborah A Howatt ◽  
Alan Daugherty

Objective: We previously demonstrated that angiotensin II (AngII) infusion into myeloid differentiation factor 88 deficient mice (MyD88−/−) resulted in a profound reduction of atherosclerosis and abdominal aortic aneurysms (AAAs) in apoE−/− mice. Furthermore, AngII directly regulated toll-like receptor (TLR) mRNA in cell types associated with these diseases. The objective of this study was to determine the specific TLR responsible for the MyD88 mediated reduction in vascular pathology. Methods and Results: MyD88 mice were bred onto an LDLr−/− background. Deficiency in this hyperlipidemic strain caused similar decreases in AngII-induced atherosclerosis and aneurysm to those we previously noted in apoE−/− mice. Male TLR4+/+ (n = 14) or −/− (n = 19), on an LDLr−/− background, were fed a fat-enriched diet (21% milk fat, 0.15% cholesterol) and infused with AngII (1,000ng/kg/min) for 28 days. TLR4−/− mice had significantly attenuated systolic blood pressure from TLR4+/+ mice both prior to and during AngII infusion (P < .01). However, AngII did increase systolic blood pressure similarly in both groups (+/+: pre-infusion 142 ± 2, post-infusion 169 ± 3 mmHg; −/−: pre-infusion 130 ± 1, post-infusion 158 ± 3 mmHg; P < .001). Neither TLR4 genotype nor AngII infusions had significantly different effects on total plasma cholesterol concentrations or lipoprotein-cholesterol distributions. TLR4 deficiency dramatically decreased AngII-induced atherosclerotic lesion areas in both the aortic arch (50% decrease, P < .004), and thoracic aorta (66% decrease, P < .001). TLR4 deficiency decreased the diameter of the suprarenal abdominal aortic region from 2.31 ± 0.3 to 1.2 ± 0.06 mm (P < 0.001) and the incidence of AAAs from 93% to 26% (P < 0.001), versus control animals. Conversely, TLR2 deficiency reduced AngII-induced atherosclerosis in LDLr−/− mice, but had no significant effect on AAA formation. Conclusion: TLR4 deficiency attenuated both AngII-induced atherosclerosis and AAAs, in LDLr−/− mice, in a manner similar to the effects of MyD88 deficiency. TLR2 deficiency decreased AngII-induced atherosclerosis, but had no effect on AAAs. These data are consistent with TLR4 being the major receptor for MyD88-induced effects on AngII-induced AAAs. This research has received full or partial funding support from the American Heart Association, AHA Great Rivers Affiliate (Delaware, Kentucky, Ohio, Pennsylvania & West Virginia).


Sign in / Sign up

Export Citation Format

Share Document