scholarly journals Volumetric and dosimetric impact of Post-Surgical MRI guided radiotherapy for Glioblastoma: A pilot study

BJR|Open ◽  
2021 ◽  
Author(s):  
Marcus Tyyger ◽  
Suchandana Bhaumik ◽  
Michael Nix ◽  
Stuart Currie ◽  
Chandran Nallathambi ◽  
...  

Objectives: Glioblastoma (GBM) radiotherapy (RT) target delineation requires MRI, ideally concurrent with CT simulation (pre-RT MRI). Due to limited MRI availability, <72 h post-surgery MRI is commonly used instead. Whilst previous investigations assessed volumetric differences between post-surgical and pre-RT delineations, dosimetric impact remains unknown. We quantify volumetric and dosimetric impact of using post-surgical MRI for GBM target delineation. Methods: Gross tumour volumes (GTVs) for five GBM patients receiving chemo-RT with post-surgical and pre-RT MRIs were delineated by three independent observers. Planning target volumes (PTVs) and RT plans were generated for each GTV. Volumetric and dosimetric differences were assessed through: absolute volumes, volume-distance histograms, and dose-volume histogram statistics. Results: Post-surgical MRI delineations had significantly (p < 0.05) larger GTV and PTV volumes (median 16.7 and 64.4 cm3 respectively). Post-surgical RT plans, applied to pre-RT delineations, had significantly decreased (p < 0.01) median PTV doses (ΔD99% = −8.1 Gy and ΔD95% = −2.0 Gy). Median organ at risk (OAR) dose increases (brainstem ΔD5% =+0.8, normal brain mean dose =+2.9 and normal brain ΔD10% = 5.3 Gy) were observed. Conclusion: Post-surgical MRI delineation significantly impacted RT planning, with larger normal-appearing tissue volumes irradiated and increased OAR doses, despite a reduced coverage of the pre-RT defined target. Advances in knowledge: We believe this is the first investigation assessing the dosimetric impact of using post-surgical MRI for GBM target delineation. It highlights the potential of significantly degraded RT plans, showing the clinical-need for dedicated MRI for GBM RT.

2019 ◽  
Vol 103 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Roel G.J. Kierkels ◽  
Albin Fredriksson ◽  
Stefan Both ◽  
Johannes A. Langendijk ◽  
Daniel Scandurra ◽  
...  

2011 ◽  
Vol 114 (6) ◽  
pp. 1580-1584 ◽  
Author(s):  
Lijun Ma ◽  
Paula Petti ◽  
Brian Wang ◽  
Martina Descovich ◽  
Cynthia Chuang ◽  
...  

Object Technical improvements in commercially available radiosurgery platforms have made it practical to treat a large number of intracranial targets. The goal of this study was to investigate whether the dose to normal brain when planning radiosurgery to multiple targets is apparatus dependent. Methods The authors selected a single case involving a patient with 12 metastatic lesions widely distributed throughout the brain as visualized on contrast-enhanced CT. Target volumes and critical normal structures were delineated with Leksell Gamma Knife Perfexion software. The imaging studies including the delineated contours were digitally exported into the CyberKnife and Novalis multileaf collimator–based planning systems for treatment planning using identical target dose goals and dose-volume constraints. Subsets of target combinations (3, 6, 9, or 12 targets) were planned separately to investigate the relationship of number of targets and radiosurgery platform to the dose to normal brain. Results Despite similar target dose coverage and dose to normal structures, the dose to normal brain was strongly apparatus dependent. A nonlinear increase in dose to normal brain volumes with increasing number of targets was also noted. Conclusions The dose delivered to normal brain is strongly dependent on the radiosurgery platform. How general this conclusion is and whether apparatus-dependent differences are related to differences in hardware design or differences in dose-planning algorithms deserve further investigation.


2007 ◽  
Vol 23 (6) ◽  
pp. E6 ◽  
Author(s):  
Jesse Jones ◽  
Sunyoung Jang ◽  
Christopher C. Getch ◽  
Alan G. Kepka ◽  
Maryanne H. Marymont

✓ Radiosurgery has proven useful in the treatment of small arteriovenous malformations (AVMs) of the brain. However, the volume of healthy tissue irradiated around large lesions is rather significant, necessitating reduced radiation doses to avoid complications. As a consequence, this can produce poorer obliteration rates. Several strategies have been developed in the past decade to circumvent dose–volume problems with large AVMs, including repeated treatments as well as dose, and volume fractionation schemes. Although success on par with that achieved in lesions smaller than 3 ml remains elusive, improvements over the obliteration rate, the complication rate or both have been reported after conventional single-dose stereotactic radiosurgery (SRS). Radiosurgery with a marginal dose or peripheral dose < 15 Gy rarely obliterates AVMs, yet most lesions diminish in size posttreatment. Higher doses may then be reapplied to any residual nidi after an appropriate follow-up period. Volume fractionation divides AVMs into smaller segments to be treated on separate occasions. Doses > 15 Gy irradiate target volumes of only 5–15 ml, thereby minimizing the radiation delivered to the surrounding brain tissue. Fewer adverse radiological effects with the use of fractionated radiosurgery over standard radiosurgery have been reported. Advances in AVM localization, dose delivery, and dosimetry have revived interest in hypofractionated SRS. Investigators dispensing ≥ 7 Gy per fraction minimum doses have achieved occlusion with an acceptable number of complications in 53–70% of patients. The extended latency period between treatment and occlusion, about 5 years for emerging techniques (such as salvage, staged volume, and hypofractionated radiotherapy), exposes the patient to the risk of hemorrhage during that period. Nevertheless, improvements in dose planning and target delineation will continue to improve the prognosis in patients harboring inoperable AVMs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheng xiu Jiao ◽  
Ming li Wang ◽  
Li xin Chen ◽  
Xiao-wei Liu

AbstractThe purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV). Ninety nasopharyngeal cancer intensity-modulated radiation therapy (IMRT) plans and 60 rectal cancer volumetric modulated arc therapy (VMAT) plans were employed in this study. Of these, 20 nasopharyngeal cancer cases and 15 rectal cancer cases were randomly selected as the testing data. The DVH prediction was performed using two methods. One method applied the individual dose-volume histograms (IDVHs) induced by a series of fields with uniform-intensity irradiation and the other method applied the distance-to-target histogram and the conformal-plan-dose-volume histogram (DTH + CPDVH). The determination coefficient R2 and mean absolute error (MAE) were used to evaluate DVH prediction accuracy. The PTV DVH prediction was performed using the IDVHs. The PTV dose coverage was evaluated using D98, D95, D1 and uniformity index (UI). The OAR dose was compared using the maximum dose, V30 and V40. The significance of the results was examined with the Wilcoxon signed rank test. For PTV DVH prediction using IDVHs, the clinical plan and IDVHs prediction method achieved mean UI values of 1.07 and 1.06 for nasopharyngeal cancer, and 1.04 and 1.05 for rectal cancer, respectively. No significant difference was found between the clinical plan results and predicted results using the IDVHs method in achieving PTV dose coverage (D98,D95,D1 and UI) for both nasopharyngeal cancer and rectal cancer (p-values ≥ 0.052). For OAR DVH prediction, no significant difference was found between the IDVHs and DTH + CPDVH methods for the R2, MAE, the maximum dose, V30 and V40 (p-values ≥ 0.087 for all OARs). This work evaluates the performance of dosimetric information of several individual fields with uniform-intensity radiation for DVH prediction, and extends its application to PTV DVH prediction. The results indicated that the IDVHs method is comparable to the DTH + CPDVH method in accurately predicting the OAR DVH. The IDVHs method quantified the input features of the PTV and showed reliable PTV DVH prediction, which is helpful for plan quality evaluation and plan generation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi43-vi43
Author(s):  
James Cordova ◽  
Thomas Mazur ◽  
Timothy Mitchell ◽  
Gloria Perez-Carrillo ◽  
Qing Wang ◽  
...  

Abstract BACKGROUND Low-grade, IDH mutant (IDHmt) gliomas typically do not enhance on MRI complicating radiotherapy (RT) target delineation. Amino acid PET using 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) has demonstrated avidity in IDHmt gliomas and may assist in RT planning for non-enhancing tumors. This study aims to compare conventional and FDOPA-defined target volumes in grade 2 IDHmt gliomas. METHODS In a prospective pilot study, patients underwent MRI and FDOPA PET using a 3T MRI/PET system followed by standard therapy. Gross tumor volumes (GTV) included the T2/FLAIR abnormality and surgical cavity; clinical target volumes (CTV) included a 1 cm expansion constrained anatomically. Metabolic target volumes (MTVs) were generated using the FDOPA SUV &gt; 1.5-fold normal brain isocurve. Union of GTV and MTV generated a fusion GTV (fGTV); expanding fGTV by 1 cm yielded the fusion CTV (fCTV). Target volumes were compared volumetrically with overlap (Dice coefficient) and surface metrics (Hausdorff distance). Medians are reported with ranges. RESULTS Four patients with grade 2 IDHmt glioma (3 1p/19q codeleted oligodendrogliomas, 1 non-codeleted astrocytoma) received MRI/PET before treatment. All oligodendrogliomas exhibited FDOPA avidity; the astrocytoma showed no avidity. GTV and CTV measured 16.1 cc (4.9 - 82.2 cc) and 76.7 cc (29.5 - 256.1 cc), respectively. The MTV volume outside of GTV was 0.8 cc (0.2 – 6.1 cc), but was covered in each case by the CTV. Addition of FDOPA increased fGTV and fCTV volumes by 5.4% and 17.5%, respectively. Dice coefficient and Hausdorff distances for GTV vs fGTV were 0.96 (0.95 - 0.99) and 11.2 mm (10.0 – 11.9 mm), respectively, and for CTV vs fCTV were 0.87 (0.81 – 0.95) and 10.2 mm (10.0 - 11.0), respectively. CONCLUSIONS FDOPA PET identified tracer-avid regions outside of MRI-defined GTVs in a group of IDHmt gliomas. FDOPA PET provides useful metabolic information for RT planning and warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document