scholarly journals Removal of Cu(II) from Aqueous Solution Using a Micaceous Mineral of Kenyan Origin

2003 ◽  
Vol 21 (3) ◽  
pp. 269-283 ◽  
Author(s):  
Stephen Attahiru ◽  
Paul M. Shiundu ◽  
John M. Onyari ◽  
Eliud M. Mathu

A micaceous mineral (MicaM) available locally in Kenya was utilized as an inexpensive and effective adsorbent for the removal of Cu2+ ions from aqueous solution. The effects of contact time, pH, temperature, adsorbate and adsorbent concentrations, and the concentration of electrolyte on the removal of Cu2+ ions were studied. Maximum removal of Cu2+ ions occurred over the pH range 4.0–7.0. The adsorption of Cu2+ ions increased with an increase in the dose ratio of mineral to Cu2+ ion concentration and decreased with adsorbent particle size. Isotherm analysis of the adsorption data obtained at 25°C showed that the adsorption of Cu2+ ions on MicaM followed both the Langmuir and Freundlich isotherms. The uptake of Cu2+ ions increased on increasing the pH of the solution from 1.5 to 7.0 as well as on increasing the temperature from 25°C to 60°C. An adsorption capacity of 0.850 g/g was achieved for MicaM towards the Cu2+ ion. This study has demonstrated that locally abundant micaceous mineral can be used as an effective adsorbent for the treatment of waters containing Cu2+ ions without any prior chemical pretreatment.

2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2020 ◽  
Vol 3 (4) ◽  
pp. 307-316
Author(s):  
Nguyen Dinh Trung ◽  
Le Thi Ha Lan ◽  
Truong Dong Phuong

Adsorption of Cs+ ion from aqueous solution by Zn2[Fe(CN)6] and Zn3[Fe(CN)6]2 nanoparticle, and the effect of experimental conditions on the adsorption were investigated. Preliminary results showed that two materials were very efficient as an absorbent. Zn2[Fe(CN)6] and Zn3[Fe(CN)6]2 nanoparticle adsorbents for removal Cs+ion from solution have been successfully synthesized. Comparison between two materials, the Cs + ion adsorption capacity of Zn2[Fe(CN)6] was higher than Zn3[Fe(CN)6]2 and the reaction time was shorter. The adsorption equilibrium time of Zn3[Fe(CN)6]2 was about 20 hours, and the suitable pH range 3-7 while the Zn2[Fe(CN)6] was 15 minutes. The Cs+ ion absorption by Zn2[Fe(CN)6] nanoparticle follow the ion exchange mechanism, the best exchange capacities of the material were in the pH 3-5 range, ion exchange capacity depended on the pH, the maximum ion exchange capacity of the material at pH = 4 was 1.01 meq (Cs+) / g. After 15 min, about 98% of initial Cs+ ion concentration was removed from the solution; the adsorption data did not accord with Langmuir and Freundlich isotherms. The high adsorption capacity and good performance on other aspects, make the Zn2[Fe(CN)6] nanoparticle a promising adsorbent for the removal of Cs+ ion from water.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Venkateswara Rao Surisetty ◽  
Janusz Kozinski ◽  
L. Rao Nageswara

Ficus benghalensisL., a plant-based material leaf powder, is used as an adsorbent for the removal of lead ions from aqueous solution using the biosorption technique. The effects of process parameters such as contact time, adsorbent size and dosage, initial lead ion concentration, and pH of the aqueous solution on bio-sorption of lead byFicus benghalensisL. were studied using batch process. The Langmuir isotherm was more suitable for biosorption followed by Freundlich and Temkin isotherms with a maximum adsorption capacity of 28.63 mg/g of lead ion on the biomass ofFicus benghalensisL. leaves.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wilson Mwandira ◽  
Kazunori Nakashima ◽  
Satoru Kawasaki ◽  
Allison Arabelo ◽  
Kawawa Banda ◽  
...  

AbstractThe present study investigated biosorption of Pb (II) and Zn (II) using a heavy metal tolerant bacterium Oceanobacillus profundus KBZ 3-2 isolated from a contaminated site. The effects of process parameters such as effect on bacterial growth, pH and initial lead ion concentration were studied. The results showed that the maximum removal percentage for Pb (II) was 97% at an initial concentration of 50 mg/L whereas maximum removal percentage for Zn (II) was at 54% at an initial concentration of 2 mg/L obtained at pH 6 and 30 °C. The isolated bacteria were found to sequester both Pb (II) and Zn (II) in the extracellular polymeric substance (EPS). The EPS facilitates ion exchange and metal chelation-complexation by virtue of the existence of ionizable functional groups such as carboxyl, sulfate, and phosphate present in the protein and polysaccharides. Therefore, the use of indigenous bacteria in the remediation of contaminated water is an eco-friendly way of solving anthropogenic contamination.


2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2017 ◽  
Vol 6 (1) ◽  
pp. 148-156
Author(s):  
P. Indhumathi ◽  
S. Sathiyaraj ◽  
U. S. Shoba ◽  
P. S. Syed Shabudeen ◽  
C. Jayabalakrishnan

Adsorption is a unique process for the removal of pollutants from water and wastewater since the process is cost effective, easily adoptable and environmentally compatible. The micro algae are a promising way to produce a useful adsorbent for Thorium (VI) removal from aqueous solution. The specific surface area of the microalgae was determined and its properties studied by scanning electron microscopy (SEM). Adsorptive removal of Thorium (VI) from aqueous solution on micro algae has been studied under varying conditions of agitation time, metal ion concentration, adsorbent dose and pH to assess the kinetic and equilibrium parameters. Adsorption equilibrium was obtained in 120 min for 20 to 120 mg/L of Thorium (VI) concentrations. The Langmuir, Freundlich, Temkin, Redlich-Peterson isotherm models, kinetic models and thermodynamic models were found to provide an excellent fitting of the adsorption data. The adsorption capacity of thorium 91.73% maximum percent removal in thorium at pH 3. This adsorbent was found to be effective and economically attractive.


2009 ◽  
Vol 6 (2) ◽  
pp. 361-370 ◽  
Author(s):  
R. Rajalakshmi ◽  
S. Subhashini ◽  
P. Lalitha

Elimination of heavy metals like nickel from waste water is an important subject in view of public health. In the present study, an attempt has been made to study the applicability of industrial by-products as potential metal adsorbents to remove nickel from aqueous solutions and polluted water. A direct proportionality between the percentage of Ni(II) removal and adsorbent dosage was noted. Maximum removal ⁄ recovery of nickel was achieved at pH range of 10-12 for all adsorbents. An optimum temperature of 40 °C for efficient removal of Ni(II) was observed. The effect of nickel adsorption was affected by salinity. The adsorption isotherm data confirmed to Freundlich and Langmuir isotherms. Conformation of data to the Lagergren᾽s rate equation indicated first order kinetics. The suitability of the industrial by-products in the successful removal of nickel from aqueous solution is quite obvious from the study.


2009 ◽  
Vol 27 (4) ◽  
pp. 363-382 ◽  
Author(s):  
A.A. Khalil ◽  
H.H. Sokker ◽  
A. Al-Anwar ◽  
A. Abd El-Zaher ◽  
A. Hashem

Radiation grafting by the mutual method of methacrylic acid/acrylonitrile (MAA/AN) onto Alhagi residues in the presence of dimethylformamide (DMF) as a solvent is discussed. The factors affecting the radiation graft copolymerization were investigated. These included radiation dose, co-monomer composition and concentration. The grafted samples were characterized using FT-IR spectroscopy and scanning electron microscopy (SEM), as well as by the estimation of their nitrogen and carboxyl group contents. The grafted samples were then amidoximated by treatment with hydroxylamine hydrochloride in an alkaline medium. Such amidoximated poly(MAA/AN)-grafted Alhagi residues were utilized for the removal of Zn(II) ions from aqueous solution by adsorption and the factors affecting such adsorption processes were studied. These factors were the pH of the adsorbate solution, the adsorbent dosage, the contact time and the adsorption temperature. The adsorption data obeyed the Langmuir and Freundlich isotherms. The Langmuir adsorption capacity (Qmax) of the amidoximated poly(MAA/AN)-grafted Alhagi residues towards Zn(II) ions was found to be 212.76 and 344.8 mg/g at 30 °C and 50 °C, respectively. Similarly, the Freundlich constants, KF and 1/n, at 30 °C were found to be 21.47 and 0.3489, respectively. The study showed that amidoximated poly(MAA/AN)-grafted Alhagi residues were effective in the adsorption of Zn(II) ions from aqueous solutions. The thermodynamics parameters of the adsorption process, viz. ΔH0, ΔG0 and ΔS0, were evaluated. The results showed that the adsorption of Zn(II) ions onto amidoximated poly(MAA/AN)-grafted Alhagi residues was endothermic and spontaneous. The adsorption data followed second-order kinetics.


2019 ◽  
Vol 2 (1) ◽  
pp. 112-120
Author(s):  
Nguyen Dinh Trung ◽  
Le Thi Ha Lan

Zr-γ-FeOOH nanoparticle adsorbent for As(V) and As(III) removal was prepared by a chemical co-precipitation method. Compared with γ-FeOOH, the addition of Zr enhanced the adsorptive capacities of As(V) and As(III). The maximum adsorptive capacities for As(V) and As(III) were 69.81 and 94.25 mg/g, respectively (rate Fe:Zr =1:0.5) at pH= 7.0. The adsorption data accorded with Langmuir and Freundlich isotherms. The adsorption of As(III) by Zr- γ-FeOOH was found to be effective in wide pH range of 6–8. Competitive ions hindered the adsorption according to the decreasing sequence phosphate, sulfate, ammonium, chloride, magnesium and calcium. The high adsorptive capability and good performance on other aspects make the Zr-γ- FeOOH nanorods a promissing adsorbent for the removal of As(V) and As(III) from groundwater.


Sign in / Sign up

Export Citation Format

Share Document