Strength Analysis of Large-Scale Multiplanar Tubular Joints with Inner-Plate Reinforcement

2009 ◽  
Vol 24 (3) ◽  
pp. 161-177 ◽  
Author(s):  
Shao Yong-Bo ◽  
Zhang Ji-Chao ◽  
Qiu Zhi-Heng ◽  
Shang Jie-Juan

For large scale multiplanar tubular joints used in practical engineering, the brace/chord intersection is a critical position as failure usually occurs here due to the weak bearing capacity of the chord in radius direction compared to the strength of the braces in axial direction. To improve the ultimate strength, different reinforcements can be used to strengthen the structures. Inner plate reinforcement is a relatively new strengthening method compared to conventional reinforcing methods. As there is no corresponding guideline which can be used for the design of inner plate reinforcing joints, it is necessary to investigate the failure mechanism of such tubular structures. Both experimental test and finite element analysis are carried out in this study to investigate the static behaviour of multiplanar tubular joint reinforced with inner plate. In the experimental work, the stresses distribution and development of the specimen is monitored, and the failure mode is observed. From the experimental results, both the failure process of the multiplanar tubular joint and the reinforcing efficiency of the inner plate were analyzed. Using finite element analysis, the failure process of the specimen is also analyzed step by step. The finite element results agree reasonably well with experimental measurements.

2012 ◽  
Vol 472-475 ◽  
pp. 2143-2147
Author(s):  
Mei Yan You ◽  
Shi Wei Zhang

A strength analysis on a large-scale horizontal vacuum tank, a dry equipment of the “ two million” large transformers, will be done in this article. Using the means of finite element analysis and two different unit-setting models, we compare the two results getting from the two units. Different lengthen styles of vacuum tank’s reinforced bead will be discussed, as well as different processing styles of welding parts model-setting in ANSYS.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Atsushi Nakajima ◽  
Katsuhiro Hirata ◽  
Noboru Niguchi ◽  
Masayuki Kato

Abstract Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document