scholarly journals Mouse in vivo-derived late 2-cell embryos have higher developmental competence after high osmolality vitrification and −80°C preservation than IVF or ICSI embryos

Author(s):  
Erika HAYASHI ◽  
Sayaka WAKAYAMA ◽  
Daiyu ITO ◽  
Ayumi HASEGAWA ◽  
Keiji MOCHIDA ◽  
...  
2005 ◽  
Vol 17 (8) ◽  
pp. 751 ◽  
Author(s):  
Mona E. Pedersen ◽  
Øzen Banu Øzdas ◽  
Wenche Farstad ◽  
Aage Tverdal ◽  
Ingrid Olsaker

In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.


2020 ◽  
Author(s):  
Vera A van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Johannes Knubben ◽  
Veronika L Flöter ◽  
...  

Abstract Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts.Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation, tRNA charging, and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, signaling of Rho family GTPases, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts.Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.


2021 ◽  
Author(s):  
Camille Boudreau-Pinsonneault ◽  
Awais Javed ◽  
Michel Fries ◽  
Pierre Mattar ◽  
Michel Cayouette

Temporal identity factors are sufficient to reprogram developmental competence of neural progenitors, but whether they could also reprogram the identity of fully differentiated cells is unknown. To address this question, we designed a conditional gene expression system combined with genetic lineage tracing that allows rapid screening of potential reprogramming factors in the mouse retina. Using this assay, we report that co-expression of the early temporal identity transcription factor Ikzf1, together with Ikzf4, another Ikaros family member, is sufficient to directly convert adult Muller glial cells into neuron-like cells in vivo, without inducing a proliferative progenitor state. scRNA-seq analysis shows that the reprogrammed cells share some transcriptional signatures with both cone photoreceptors and bipolar cells. Furthermore, we show that co-expression of Ikzf1 and Ikzf4 can reprogram mouse embryonic fibroblasts to induced neurons by remodeling chromatin and promoting a neuronal gene expression program. This work uncovers general neuronal reprogramming properties for temporal identity factors in differentiated cells, opening new opportunities for cell therapy development.


Reproduction ◽  
2001 ◽  
pp. 51-75 ◽  
Author(s):  
A Trounson ◽  
C Anderiesz ◽  
G Jones

Complete maturation of oocytes is essential for the developmental competence of embryos. Any interventions in the growth phase of the oocyte and the follicle in the ovary will affect oocyte maturation, fertilization and subsequent embryo development. Oocyte size is associated with maturation and embryo development in most species examined and this may indicate that a certain size is necessary to initiate the molecular cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle required for developmental competence in humans is 5-7 mm in diameter. Maturation in vitro can be accomplished in humans, but is associated with a loss of developmental competence unless the oocyte is near completion of its preovulatory growth phase. This loss of developmental competence is associated with the absence of specific proteins in oocytes cultured to metaphase II in vitro. The composition of culture medium used successfully for maturation of human oocytes is surprisingly similar to that originally developed for maturation of oocytes in follicle culture in vitro. The presence of follicle support cells in culture is necessary for the gonadotrophin-mediated response required to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and FSH-LH exposure may be important for human oocytes, particularly those not exposed to the gonadotrophin surge in vivo. More research is needed to describe the molecular and cellular events, the presence of checkpoints and the role of gene expression, translation and protein uptake on completing oocyte maturation in vitro and in vivo. In the meantime, there are very clear applications for maturing oocytes in human reproductive medicine and the success rates achieved in some of these special applications are clinically valuable.


2017 ◽  
Vol 29 (9) ◽  
pp. 1667 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.


2018 ◽  
Vol 30 (12) ◽  
pp. 1728 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.


2006 ◽  
Vol 18 (2) ◽  
pp. 129 ◽  
Author(s):  
G. Jang ◽  
M. Kim ◽  
H. J. Oh ◽  
F. Y. Heru ◽  
M. S. Hossein ◽  
...  

The present study was performed to collect in vivo matured canine oocytes for somatic cell nuclear transfer (SCNT) and to investigate the developmental competence of canine parthenogenetic and SCNT embryos as the preliminary research for producing cloned dog. The day of ovulation as described by Hase et al. (2000 J. Vet. Med. Sci. 62, 243-248) was determined by serum progesterone levels and at that time vaginal cytology was performed to assess the cornified index. In vivo-matured oocytes were recovered by retrograde flushing of the oviducts at around 48 h (n = 20) or 72 h (n = 25) after the estimated time of ovulation. Overall size of each oocyte, as well as ooplasmic diameter, zona pellucida thickness, and perivitelline space width, was determined after removing the cumulus cells by pipetting (Exp. 1). To determine activation protocols, two treatments, (1) chemical activation (10 �M Ca ionophore for 4 min, followed by incubation for 4 h with 1.9 mM 6-dimethylaminopurine) and (2) electrical stimulation (3.1?3.4 kV/cm in 0.25M mannitol solution), were evaluated to induce parthenogenetic activation of oocytes (Exp. 2). Donor cells were obtained from the primary cell culture of a canine ear skin biopsy, and SCNT was performed according to our laboratory procedures (Jang et al. 2004 Theriogenology 62, 512-521). Three voltages (1.7?2.0 kV/cm, 2.1-2.4 kV/cm, and 3.1-3.4 kV/cm) were tested for fusion. The fused couplets were subjected to chemical or electrical stimulation as in parthenogenetic activation and in vitro developmental competence was monitored (Exp. 3). As a result, more in vivo-matured canine oocytes were obtained at 72 h (92%) than at 48 h (15%) after ovulation; the 72-h occytes had progesterone concentrations of 4-8 ng/mL and a cornified index (vaginal cytology) of 83.34. The average number of oocytes recovered was 12 and sizes of ooplasmic diameter, cytoplasm, zona pellucida, and perivitelline space in in vivo canine-matured oocytes (n = 120) were 178.8 � 9.3 �m, 125.0 � 8.2 �m, 21.7 � 3.7 �m, and 12.7 � 3.5 �m, respectively. Parthenogenetically activated oocytes developed to the 16-cell and morula stages, but failed to develop to the blastocyst stage. Among the three voltages, in the highest voltage (75.2%) the number of fused couplets was increased compared to either of the other voltages (33.3% and 44.0%). Cleavage rates (60.9% vs. 58.0%) of cloned embryos were not significantly affected by method of activation. In terms of in vitro developmental competence, cloned embryos developed to the 16-cell or morula stage in vitro after electrical or chemical activation, respectively. In conclusion, in the present study we demonstrated that measurement of progesterone levels, in combination with evaluation of vaginal cytology, can be used to determine the estimated time of ovulation in bitches. In addition, we determined fusion/activation protocols that resulted in in vitro development of a portion of parthenogenetically activated and cloned embryos to the 16-cell and morula stages. This study was supported by grants from the Biogreen 21-1000520030100000.


2006 ◽  
Vol 18 (2) ◽  
pp. 157 ◽  
Author(s):  
K. Hiruma ◽  
H. Ueda ◽  
H. Saito ◽  
C. Tanaka ◽  
N. Maeda ◽  
...  

To date only in vivo-produced embryos have successfully produced live piglets after cryopreservation. In this study, we aimed to produce piglets from vitrified embryos derived from in vitro matured (IVM) oocytes. Cumulus-oocyte complexes collected from ovaries obtained at a local slaughterhouse were matured for 44 to 45 h in NCSU23 MEDIUM supplemented with 0.6 mM cysteine, 10 ng/mL epidermal growth factor, 10% (v/v) porcine follicular fluid, 75 �g/mL potassium penicillin G, 50 �g/mL streptomycin sulfate, and 10 IU/mL eCG/ hCG. These IVM oocytes were either activated for parthenogenesis or in vitro-fertilized (IVF). For IVF, oocytes were incubated with 5 � 106/mL of cryopreserved epididymal sperm in PGM-tac medium (Yoshioka et al. 2003 Biol. Reprod. 69, 2092-2099) for 20 h. Embryos were treated for removal of cytoplasmic lipid droplets (delipation; Nagashima et al. 1995 Nature 374, 416) at the 4- to 8-cell stages, around 50 to 54 h after activation or insemination. After culture in NCSU23 for 15 h, they were vitrified by the minimum volume cooling (MVC) method. Embryos were equilibrated with equilibration solution containing 7.5% (v/v) ethylene glycol (EG), 7.5% (v/v) dimethylsulfoxide (DMSO), and 20% (v/v) calf serum for 4 min, followed by exposure to vitrification solution containing 15% EG, 15% DMSO, 0.5 M sucrose, and 20% calf serum. Embryos were then loaded onto a Cryotop (Kitazato Supply Co., Tokyo, Japan) and immediately plunged into liquid nitrogen. Vitrified embryos were examined for viability in vitro and in vivo after warming. Their in vitro developmental competence was compared to that of corresponding control (nonvitrified) embryos. Vitrified 4- to 8-cell stage embryos, both parthenogenetic and IVF, showed developmental competence into blastocysts comparable to that of control embryos (parthenogenetic: 46.8%, 36/77 vs. 51.7%, 31/60; IVF: 40.0%, 30/75 vs. 44.3%, 35/79). Of four surrogate gilts that received a total of 251 vitrified parthenogenetic embryos, three became pregnant and had 20 fetuses (8.0%, 22 to 23 days old). Three surrogates gilts that received 267 vitrified IVF embryos all became pregnant. Of those, the one that received 47 embryos was confirmed to have eight fetuses (17.0%, 22 days old) by autopsy. The other two were examined by ultrasonography at 56 and 95 days of gestation and found to be pregnant. These results suggest that porcine embryos derived from IVM oocytes have a potential to develop into live offspring after delipation and MVC vitrification. This study was supported by PROBRAIN.


2006 ◽  
Vol 18 (2) ◽  
pp. 133 ◽  
Author(s):  
I. K. Kong ◽  
H. S. Lee ◽  
N. H. Kim ◽  
L. H. Kim ◽  
H. D. Shin ◽  
...  

The leopard cat (Prionailurus bengalensis), a member of the felidae family, is currently listed as threatened by the Ministry of Environment in South Korea. In exotic or endangered species, the lack of oocytes and recipients precludes the use of traditional somatic cell nuclear transfer (NT), and an approach such as intragenus NT may be the only alternative for producing embryos and offspring. In the present study, we used the leopard cat (LC) as a somatic cell donor to evaluate the in vivo developmental competence, after transfer into domestic cat recipients, of cloned embryos produced by the fusion of LC fibroblast cell nuclei with domestic cat cytoplasts. A total of 412 enucleated domestic cat oocytes were reconstructed with either male (Treatment A) or female (Treatment B) adult LC fibroblasts. There was no significant difference in fusion rate (60.4 vs. 56.9%) between Treatment A and B. Of the fused couplets, the cleavage and blastocyst developmental rate in Treatment A were greater than those in Treatment B (69.5 vs. 60.9%; 8.3 vs. 7.8%; P < 0.05). In treatment A, in vivo developmental studies at 30-45 days postimplantation demonstrated 4.8% (21/435) of reconstructed embryos (n = 435) had entered into the uterine lining of recipients, but only 1.4% (6/435) formed fetuses. However, all of the reconstructed embryos failed to develop to term (65 days). Microsatellite analyses confirmed that the nuclear genome of the cloned fetuses were LC in origin.


Sign in / Sign up

Export Citation Format

Share Document