Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers

2014 ◽  
Vol 34 (6) ◽  
pp. 1677 ◽  
Author(s):  
Cho
2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


2015 ◽  
Vol 659 ◽  
pp. 143-148 ◽  
Author(s):  
Rachamongkon Wongruk ◽  
Smith Songpiriyakij ◽  
Piti Sukontasukkul ◽  
Prinya Chindaprasirt

In this study, the mechanical properties of steel fibre reinforced geopolymer (SFRG) are investigated. The geopolymer is consisted of fly ash, silica fume and activator solution, sodium silicate and sodium hydroxide. Five mix proportions of fly ash and silica fume are varied to study the effect of fly ash/silica fume ratios (FA/SF). This experimental series focus mainly on flexural strength and flexural toughness performance of SFRG. Hooked-ends steel fibers are used at 0.5% and 1% by volume fractions. The experiment is carried out based on ASTM C1609 (beam specimens) for flexural performance. The results showed that fibre can significantly enhance the both flexural strength and toughness of geopolymer. The enhancement also increases with the increasing fibre volume fraction.


2017 ◽  
Vol 16 (5) ◽  
pp. 1123-1128 ◽  
Author(s):  
Marinela Barbuta ◽  
Adrian Alexandru Serbanoiu ◽  
Andrei Burlacu ◽  
Catalina Mihaela Gradinaru

Procedia CIRP ◽  
2019 ◽  
Vol 85 ◽  
pp. 277-283 ◽  
Author(s):  
Marius Monoranu ◽  
Sam Ashworth ◽  
Rachid M’Saoubi ◽  
J. Patrick Fairclough ◽  
Kevin Kerrigan ◽  
...  

2015 ◽  
Vol 27 (4) ◽  
pp. 387-397
Author(s):  
Hyeon-Jong Hwang ◽  
Hong-Gun Park ◽  
Geon-Ho Hong ◽  
Gap-Deug Kim ◽  
Se-Jin Choi

2012 ◽  
Vol 238 ◽  
pp. 33-36 ◽  
Author(s):  
Chang Yong Li ◽  
Li Sha Song ◽  
Li Sun ◽  
Chen Jie Cao ◽  
Tong Xing

This paper introduces the test results of the flexural performance of CF40 steel fiber reinforced concrete (SFRC) designed by the binary superposition mix design method. The flexural strength and flexural load ~ deflection curves were got from the test SFRC specimens with the different fraction of steel fiber by volume and the different thickness of cement paste wrapping steel fibers. The effects of the fraction of steel fiber by volume and the thickness of cement paste on the flexural strength and toughness of SFRC are analyzed. It is demonstrated that the flexural toughness of SFRC increases with the increase of the fraction of steel fiber by volume, the reasonable thickness of cement paste wrapping steel fibers is 1.0mm.


2020 ◽  
Vol 304 ◽  
pp. 75-80
Author(s):  
Jonbi ◽  
Resti Nur Arini ◽  
Marisa Permatasari ◽  
Partogi H. Simatupang

This research is a comparative study, the use of carbon fiber and steel fiber for Self-Compacting Concrete (SCC). In previous studies, it was proven that the addition of steel fibers can increase the compressive and tensile strength of SCC. While carbon fiber is one of the most widely used materials for structural reinforcement in recent years. Therefore it is necessary to do a comparative study of the use of carbon fiber if applied to SCC. The percentage increase in carbon fiber and steel is 0.5%, 1%, and 1.5%. Then do the testing of: slump test, compressive strength, tensile strength and flexural strength. The results showed the optimal percentage of steel fiber addition of 1.5%, can increase the compressive strength of SCC by 11%. However carbon fiber and steel do not increase the tensile strength of SCC, and tend to reduce flexural strength. Other results show that carbon fiber is not suitable for use in SCC.


Sign in / Sign up

Export Citation Format

Share Document