scholarly journals Myosin Heavy Chain 10 (MYH10) Gene Silencing Reduces Cell Migration and Invasion in the Glioma Cell Lines U251, T98G, and SHG44 by Inhibiting the Wnt/β-Catenin Pathway

2018 ◽  
Vol 24 ◽  
pp. 9110-9119 ◽  
Author(s):  
Yang Wang ◽  
Qi Yang ◽  
Yanli Cheng ◽  
Meng Gao ◽  
Lei Kuang ◽  
...  
2012 ◽  
Vol 23 (14) ◽  
pp. 2635-2644 ◽  
Author(s):  
Tao Tao ◽  
Chun Cheng ◽  
Yuhong Ji ◽  
Guangfei Xu ◽  
Jianguo Zhang ◽  
...  

The Notch signaling regulator Numblike (Numbl) is expressed in the brain, but little is known regarding its role in the pathophysiology of glial cells. In this paper, we report that Numbl expression was down-regulated in high-grade human glioma tissue samples and glioblastoma cell lines. To investigate the role of Numbl in glioma migration and invasion, we generated human glioma cell lines in which Numbl was either overexpressed or depleted. Overexpression of Numbl suppressed, while elimination of Numbl promoted, the migration and invasion of glioma cells. Numbl inhibited glioma migration and invasion by dampening NF-κB activity. Furthermore, Numbl interacted directly with tumor necrosis factor receptor–associated factor 5 (TRAF5), which signals upstream and is required for the activation of NF-κB, and committed it to proteasomal degradation by promoting K48-linked polyubiquitination of TRAF5. In conclusion, our data suggest that Numbl negative regulates glioma cell migration and invasion by abrogating TRAF5-induced activation of NF-κB.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


2013 ◽  
Vol 31 (4) ◽  
pp. 234-241 ◽  
Author(s):  
Zheng-Xiang Han ◽  
Xiao-Xia Wang ◽  
Shang-Nuan Zhang ◽  
Jin-Xia Wu ◽  
He-ya Qian ◽  
...  

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu Wan ◽  
Juanjuan Jiang ◽  
Chuanming Zheng ◽  
Ning Wang ◽  
Xia Zhai ◽  
...  

2009 ◽  
pp. NA-NA ◽  
Author(s):  
Mitsutoshi Nakada ◽  
Eric M. Anderson ◽  
Tim Demuth ◽  
Satoko Nakada ◽  
Linsey B. Reavie ◽  
...  

2018 ◽  
Vol 46 (3) ◽  
pp. 1055-1064 ◽  
Author(s):  
Xin Chen ◽  
Deheng Li ◽  
Yang Gao ◽  
Wei Tang ◽  
Lao IW ◽  
...  

Background/Aims: Long noncoding RNAs (lncRNAs) are a novel class of protein-noncoding transcripts that are aberrantly expressed in multiple diseases including cancers. LINC00152 has been identified as an oncogene involved in many kinds of cancer; however, its expression pattern and function in human glioma remain unclear. Methods: Quantitative real-time polymerase chain reaction was carried out to measure LINC00152 expression in human glioma cell lines and tissues. CCK-8 and EdU assays were performed to assess cell proliferation, and scratch assays and Transwell assays were used to assess cell migration and invasion, respectively. Luciferase reporter assays were carried out to determine the interaction between miR-16 and LINC00152. In vivo experiments were conducted to assess tumor formation. Results: LINC00152 was found to be significantly upregulated in human glioma cell lines and clinical samples. Knockdown of LINC00152 suppressed glioma cell proliferation, migration, and invasion in vitro. In vivo assays in nude mice confirmed that LINC00152 knockdown inhibits tumor growth. Furthermore, mechanistic investigation showed that LINC00152 binds to miR-16 in a sequence-specific manner and suppresses its expression. miR-16 inhibition strongly attenuated LINC00152 knockdown–mediated suppressive effects on proliferation, migration, and invasion. Moreover, LINC00152 induced BMI1 expression by sponging miR-16; this effect further promoted glioma cell proliferation and invasion. Conclusion: We regard LINC00152 as an oncogenic lncRNA promoting glioma cell proliferation and invasion and as a potential target for human glioma treatment.


1995 ◽  
Vol 82 (6) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jörg-Christian Tonn ◽  
Hans Kristian Haugland ◽  
Jaakko Saraste ◽  
Klaus Roosen ◽  
Ole Didrik Laerum

✓ The aim of this study was to investigate the antimigratory and antiinvasive potential of vincristine sulfate (VCR) on human glioma cells and to analyze whether phenytoin (5,5-diphenylhydantoin; DPH) might act synergistically with VCR. Vincristine affects the cytoplasmic microtubules; DPH has been reported to enhance VCR cytotoxicity in murine cells. In two human glioma cell lines, GaMG and D-37MG, we found VCR to reduce monolayer growth and colony formation in a dose-dependent fashion at concentrations of 10 ng/ml and above. Phenytoin increased the cytotoxic and cystostatic effects of VCR in monolayer cells but not in spheroids. Multicellular spheroids were used to investigate directional migration. A coculture system of GaMG and D-37MG spheroids with fetal rat brain aggregates was used to analyze and quantify tumor cell invasion. A dose-dependent inhibition of migration and invasion by VCR was observed in both cell lines without further enhancement by DPH. Immunofluorescence microscopy with antibodies against α-tubulin revealed dose-dependent morphological alterations in the microtubules when the cells were exposed to VCR but not after incubation with DPH. Based on the combination of standardized in vitro model systems currently in use and the present data, the authors strongly suggest that VCR inhibits migration and invasion of human glioma cells. This is not altered by DPH, which inhibits cell proliferation in combination with VCR.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 447-447
Author(s):  
Andrew M. Hau ◽  
Andrew Gilder ◽  
Jing-jing Hu ◽  
Steven L. Gonias ◽  
Donna E. Hansel

447 Background: Bladder cancer currently ranks as the fifth most common and the single most expensive cancer to manage in the United States. Although it is established that invasive behavior is a major predictor of diminished outcomes for patients with bladder cancer, the molecular mechanisms governing bladder cancer cell invasion are not well understood. The urokinase receptor (uPAR) and mammalian target of rapamycin complex 2 (mTORC2) represent two powerful pro-invasion candidates that have increased expression in high-grade, invasive bladder cancer, though the former has not been characterized in detail in bladder cancer. Therefore, the aims of this study are to characterize the uPAR signaling network and delineate the signaling interplay between mTORC2 and uPAR in bladder cancer. Methods: Using immunoblot and RT-qPCR analyses, we evaluated uPAR expression in a panel of immortalized bladder cancer cell lines: UROtsa, RT4, UMUC3, T24 and J82. uPAR influence on mTORC1 and mTORC2 signaling was determined by immunoblot analysis following targeted gene-silencing of uPAR using siRNA. Additionally, the effects of uPAR knockdown on cell migration and invasion were investigated using modified scratch-wound migration and transwell invasion assays. Lastly, signaling interplay between uPAR and mTORC2 was investigated by evaluating the effects of uPAR and mTORC2 silencing on Rac1 activity. Results: uPAR knockdown in a subset (T24 and J82) of invasive bladder cancer cell lines inhibited mTORC2, but not mTORC1, activity as measured by P-AKT S473 and P-S6 levels. We found that uPAR silencing in T24 and J82 cells resulted in significant reductions in cell migration and invasion through Matrigel. This is likely attributed to inhibition of Rac1 and decreased lamellipodia formation. Conclusions: Collectively, our results identify uPAR and mTORC2 as major regulators of bladder cancer cell invasion and that these two systems are linked through Rac1. Further investigation of uPAR and mTORC2 inhibition using uPAR-targeting antibodies and mTOR inhibitors in an in vivo mouse model of bladder cancer will determine if these signaling pathways are therapeutically beneficial for the treatment of bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document