Responses of Cleistogenes songorica Blade Ecological Anatomy and N/P Stoichiometry to Stocking Rates

2018 ◽  
Vol 07 (04) ◽  
pp. 375-385
Author(s):  
海军 陈
Author(s):  
J. Hodgson

Recent assessments of the relative importance of stocking rate. stocking policy and grazing management on the output from pastoral systems are used as a starting point to argue the need for objective pasture assessments to aid control of livestock enterprises to meet production targets. Variations in stocking rates, stocking policy and other management practices all provide alternative means of control of pasture conditions which are the major determinants of pasture and animal performance. Understanding of the influence of pasture conditions on systems performance should provide a better basis for management control and for Communication between farmers, extension officers and researchers. Keywords: Stocking rate, pasture condition, pasture cover


Author(s):  
Brian J. Wilsey

Conservation programs alter herbivore stocking rates and find and protect the remaining areas that have not been plowed or converted to crops. Restoration is an ‘Acid Test’ for ecology. If we fully understand how grassland systems function and assemble after disturbance, then it should be easy to restore them after they have been degraded or destroyed. Alternatively, the idea that restorations will not be equivalent to remnants has been termed the ‘Humpty Dumpty’ hypothesis—once lost, it cannot be put back together again. Community assembly may follow rules, and if these rules are uncovered, then we may be able to accurately predict final species composition after assembly. Priority effects are sometimes found depending on species arrival orders, and they can result in alternate states. Woody plant encroachment is the increase in density and biomass of woody plants, and it is strongly affecting grassland C and water cycles.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 27-27
Author(s):  
Jane A Parish ◽  
Kalisha C Yankey ◽  
Libby S Durst

Abstract Optimal use of native warm-season grasses in pasture systems involves stocking grazing livestock at suitable rates. The study objective was to evaluate forage nutritive value and heifer ADG at two stocking rates on mixed-sward pastures of big bluestem (Andropogon gerardi Vitman), little bluestem (Andropogon scoparius), and indiangrass (Sorghastrum nutans L.). Pastures (3 replications) were stocked for 56 d during June and July in 2 yr with crossbred (Bos taurus) heifers (n = 24 heifers/year) stratified by initial BW (288.3 ± 1.7 kg) to one of two continuous stocking rates: 1.9 heifers/ha (HIGH) and 1.2 heifers/ha (LOW). Mean forage nutritive values on a DM basis were not different between HIGH and LOW stocking rates, respectively, for CP (7.0 ± 0.2% vs 6.7 ± 0.2%; P = 0.27), ADF (41.0 ± 0.6 vs. 41.4 ± 0.6; P = 0.64), NDF (69.9 ± 0.5 vs. 68.7 ± 0.5; P = 0.09), or relative feed value (RFV) (76.0 ± 1.0 vs. 76.9 ± 1.0; P = 0.53). There was a year effect (P < 0.01) and stocking rate x day effect (P < 0.01) for TDN. At LOW, TDN decreased from day 0 to day 28 (P = 0.02) and day 28 to day 56 (P = 0.02). At HIGH, TDN decreased (P < 0.01) from day 0 to day 28 but remained steady until day 56 (P = 0.21). There was a stocking rate x day interaction (P < 0.01) with ADG: LOW day 28 to 56 (1.20 ± 0.08 kg/day), HIGH day 0 to 28 (0.89 ± 0.08 kg/day), HIGH day 28 to 56 (0.44 ± 0.08 kg/day), and LOW day 0 to 28 (0.30 ± 0.08 kg/day). Further assessment of cattle ADG using more divergent stocking rates and plant persistence measures is warranted to inform ideal native grass stocking rate recommendations.


1977 ◽  
Vol 28 (1) ◽  
pp. 133 ◽  
Author(s):  
JP Langlands

Grass and milk consumption and liveweight changes of lambs grazed at stocking rates ranging from 9 to 35 sheep/ha were measured during a 105 day lactation. Grass consumption and wool production of their mothers and of similar ewes without lambs were also determined. The forage and total organic matter intakes of the lamb increased with time while milk consumption declined; all three variables were negatively correlated with stocking rate. The intake of the ewe and its liveweight gain were not sensitive to increasing stocking rate, but wool production declined at higher stocking rates. The maintenance requirement of the ewes was estimated to be 218 kJ metabolizable energy/kg liveweight, and the efficiency with which metabolizable energy was utilized for milk production was 66%. Lactation increased the intake of the ewe but reduced its wool production.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1078
Author(s):  
Christopher Brock ◽  
Meike Oltmanns ◽  
Christoph Matthes ◽  
Ben Schmehe ◽  
Harald Schaaf ◽  
...  

Mixed-crop-livestock farms offer the best conditions for sustainable nutrient management in organic farming. However, if stocking rates are too low, sustainability might be threatened. Therefore, we studied the development of soil organic matter and nutrients as well as crop yields over the first course of a new long-term field experiment with a mimicked cattle stocking rate of 0.6 LU ha−1, which is the actual average stocking rate for organic farms in Germany. In the experiment, we tested the effects of additional compost application to improve organic matter supply to soils, and further, potassium sulfate fertilization for an improved nutrition of fodder legumes. Compost was made from internal resources of the farm (woody material from hedge-cutting). Soil organic matter and nutrient stocks decreased in the control treatment, even though yield levels, and thus nutrient exports, were comparably low. With compost application, soil organic matter and nutrient exports could be compensated for. At the same time, the yields increased but stayed at a moderate level. Potassium sulfate fertilization further improved N yields. We conclude that compost from internal resources is a viable solution to facilitate sustainable organic crop production at low stocking rates. However, we are aware that this option does not solve the basic problem of open nutrient cycles on the farm gate level.


1968 ◽  
Vol 71 (3) ◽  
pp. 327-335 ◽  
Author(s):  
J. B. Owen ◽  
W. J. Ridgman

SUMMARYExperiments designed to assess differences between treatments in pasture productivity as measured by the production of animals are complicated by the stocking rates chosen. The paper attempts toderive a simple model relating production per animal and production per unit area to stocking rate for meat animals, based on biological considerations.A method is proposed which would allow meaningful grazing experiments to be carried out employing only one stocking rate, thus considerably reducing the expense of this type of experimentation.The model is applied to some recent data obtained by Hodgson (1966) and Appleton (1967, personal communication).


1979 ◽  
Vol 19 (97) ◽  
pp. 140 ◽  
Author(s):  
EJ Bowen ◽  
KG Rickert

At Gayndah, south-eastern Queensland, a native Heteropogon contortus pasture, sown to fine-stem stylo (Stylosanthes guianensis var. intermedia), and invaded by red natal grass (Rhynchelytrum repens), was grazed by weaner steers from June 1 in three treatments : heavy and light put-and-take grazing for five years from 1971, and set-stocked at 1.37 animals ha-1 for two years from 1974. Weight gains in the put-and-take treatments were not significantly different. The mean annual liveweight gain was 167 kg animal-1 at a mean equivalent stocking rate of 1.47 animals ha-1. Over the same period unsown native pasture, cleared of timber, gave a gain of 62 kg animal-1 at 0.62 animals ha-1. In all seasons except summer, weight gains declined linearly with stocking rate and in 1972-73, with a mean equivalent stocking rate of 2.66 animals ha-1, the annual gain was almost halved. When equivalent stocking rates were 0.9, 0.9, 1.8 and 1.2 animals ha-1 in winter, spring, summer and autumn, the respective gains were 4, 73, 65 and 45 kg animal-1. The set-stocked treatment had a mean annual gain of 147 kg animal-1. At another site 116 km north-west of Gayndah, two paddocks of Heteropogon contortus and fine-stem stylo were set-stocked with weaners over four years. One paddock had four applications of superphosphate of 250 kg ha-1. The mean annual liveweight gains were significantly different, being 154 and 143 kg animal-1 in the fertilized and unfertilized paddocks at mean stocking rates of 0.83 and 0.74 animals ha-1, respectively. In a grazing protection experiment the density of fine-stem stylo declined exponentially with an accumulation of pasture dry matter in spring and summer. Heavy continuous grazing, an annual hay cut and an accidental fire all increased the density of fine-stem stylo. Management options to maintain the density of fine-stem stylo and the relative importance of the legume and grass to animal production are discussed.


1997 ◽  
Vol 128 (3) ◽  
pp. 339-346 ◽  
Author(s):  
D. T. CHONG ◽  
I. TAJUDDIN ◽  
Abd. M. S. SAMAT ◽  
W. W. STÜR ◽  
H. M. SHELTON

The productivity of grazing sheep was assessed under 7-year-old rubber at the Rubber Research Institute of the Malaysia Experimental Station at Sungai Buloh near Kuala Lumpur between October 1988 and May 1990. The sheep were Dorset × Marlin crossbred lambs and they grazed planted leguminous cover crops and naturally occurring species at a range of stocking rates.In the immature rubber trial, presentation yields of forage declined with time regardless of stocking rate. In the mature rubber trial, presentation yields of forage were low (<1000 kg/ha) due to low light transmission. High stocking rates (>6 sheep/ha) resulted in a decrease in the proportion of palatable species, namely Pueraria phaseoloides, Paspalum conjugatum, Asystasia gangetica and Mikania micrantha and an increase in the proportion of the less palatable species such as Calopogonium caeruleum and Cyrtococcum oxyphyllum.Daily liveweight gains ranged from 100 g/lamb per day at 4 sheep/ha to 70 g/lamb per day at 14 sheep/ha in the immature rubber trial. Only the lowest stocking rate of 2 sheep/ha was continuously sustainable in the mature rubber trial. The estimated maximum liveweight gain that could be achieved under immature rubber was 266 kg/ha per year at a stocking rate of 13·2 sheep/ha.


2021 ◽  
Vol 13 (11) ◽  
pp. 6109
Author(s):  
Joanne Lee Picknoll ◽  
Pieter Poot ◽  
Michael Renton

Habitat loss has reduced the available resources for apiarists and is a key driver of poor colony health, colony loss, and reduced honey yields. The biggest challenge for apiarists in the future will be meeting increasing demands for pollination services, honey, and other bee products with limited resources. Targeted landscape restoration focusing on high-value or high-yielding forage could ensure adequate floral resources are available to sustain the growing industry. Tools are currently needed to evaluate the likely productivity of potential sites for restoration and inform decisions about plant selections and arrangements and hive stocking rates, movements, and placements. We propose a new approach for designing sites for apiculture, centred on a model of honey production that predicts how changes to plant and hive decisions affect the resource supply, potential for bees to collect resources, consumption of resources by the colonies, and subsequently, amount of honey that may be produced. The proposed model is discussed with reference to existing models, and data input requirements are discussed with reference to an Australian case study area. We conclude that no existing model exactly meets the requirements of our proposed approach, but components of several existing models could be combined to achieve these needs.


Sign in / Sign up

Export Citation Format

Share Document