scholarly journals Hydrothermal methane fluxes from the soil at Lakki plain (Nisyros Island, Greece)

2016 ◽  
Vol 47 (4) ◽  
pp. 1920
Author(s):  
W. D’Alessandro ◽  
A. L. Gagliano ◽  
K. Kyriakopoulos ◽  
F. Parello

Methane and CO2 flux measurements from the soils were made with the accumulation chamber method in Lakki plain covering an area of about 0.06 km2 including the main fumarolic areas of Kaminakia, Stefanos and Phlegeton. Flux values measured at 77 sites range from –3.4 to 1420 mg m-2 d-1 for CH4 and from 0.1 to 383 g m-2 d-1 for CO2. The three fumarolic areas show very different methane degassing patterns, Kaminakia showing the highest flux values. Methane output can be estimated in about 0.01 t a-1 from an area of about 2500 m2 at Phlegeton, about 0.1 t a-1 from an area of about 20,000 m2 at Stefanos and about 0.25 t a-1 from an area of about 30,000 m2 at Kaminakia. The total output from the entire geothermal system of Nisyros should not exceed 1 t a-1. Previous estimates of the CH4 output at Nisyros, based on soil CO2 output and CH4/CO2 ratios in fumarolic gases, were more than one order of magnitude higher. The present work further underscores the utmost importance of direct CH4 flux data.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Kyriaki Daskalopoulou ◽  
Antonina Lisa Gagliano ◽  
Sergio Calabrese ◽  
Lorenza Li Vigni ◽  
Manfredi Longo ◽  
...  

Forty-five gas samples have been collected from natural gas manifestations at the island of Kos—the majority of which are found underwater along the southern coast of the island. On land, two anomalous degassing areas have been recognized. These areas are mainly characterized by the lack of vegetation and after long dry periods by the presence of sulfate salt efflorescence. Carbon dioxide is the prevailing gas species (ranging from 88 to 99%), while minor amounts of N2 (up to 7.5%) and CH4 (up to 2.1%) are also present. Significant contents of H2 (up to 0.2%) and H2S (up to 0.3%) are found in the on-land manifestations. Only one of the underwater manifestations is generally rich in N2 (up to 98.9%) with CH4 concentrations of up to 11.7% and occasionally extremely low CO2 amounts (down to 0.09%). Isotope composition of He ranges from 0.85 to 6.71 R/RA, indicating a sometimes-strong mantle contribution; the highest values measured are found in the two highly degassing areas of Paradise beach and Volcania. C-isotope composition of CO2 ranges from -20.1 to 0.64‰ vs. V-PDB, with the majority of the values being concentrated at around -1‰ and therefore proposing a mixed mantle—limestone origin. Isotope composition of CH4 ranges from -21.5 to +2.8‰ vs. V-PDB for C and from -143 to +36‰ vs. V-SMOW for H, pointing to a geothermal origin with sometimes-evident secondary oxidation processes. The dataset presented in this work consists of sites that were repeatedly sampled in the last few years, with some of which being also sampled just before and immediately after the magnitude 6.6 earthquake that occurred on the 20th of July 2017 about 15 km ENE of the island of Kos. Changes in the degassing areas along with significant variations in the geochemical parameters of the released gases were observed both before and after the seismic event; however, no coherent model explaining those changes was obtained. CO2 flux measurements showed values of up to about 104 g×m−2×d−1 in both the areas of Volcania and Kokkino Nero, 5×104 g×m−2×d−1 at Paradise beach, and 8×105 g×m−2×d−1 at Therma spring. CO2 output estimations gave values of 24.6, 16.8, 12.7, and 20.6 t×d−1, respectively, for the above four areas. The total output of the island is 74.7 t×d−1 and is comparable to those of the other active volcanic/geothermal systems of Greece (Nisyros, Nea Kameni, Milos, Methana, and Sousaki).


2018 ◽  
Vol 15 (11) ◽  
pp. 3331-3343 ◽  
Author(s):  
Daiki Nomura ◽  
Mats A. Granskog ◽  
Agneta Fransson ◽  
Melissa Chierici ◽  
Anna Silyakova ◽  
...  

Abstract. Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( >  −7.5 °C) due to the insulating snow cover despite air temperatures as low as −40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m−2 day−1 for young ice and +0.2 ± 0.2 mmol C m−2 day−1 for older ice).


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 465 ◽  
Author(s):  
Kiwamu Ishikura ◽  
Untung Darung ◽  
Takashi Inoue ◽  
Ryusuke Hatano

This study investigated spatial factors controlling CO2, CH4, and N2O fluxes and compared global warming potential (GWP) among undrained forest (UDF), drained forest (DF), and drained burned land (DBL) on tropical peatland in Central Kalimantan, Indonesia. Sampling was performed once within two weeks in the beginning of dry season. CO2 flux was significantly promoted by lowering soil moisture and pH. The result suggests that oxidative peat decomposition was enhanced in drier position, and the decomposition acidify the peat soils. CH4 flux was significantly promoted by a rise in groundwater level, suggesting that methanogenesis was enhanced under anaerobic condition. N2O flux was promoted by increasing soil nitrate content in DF, suggesting that denitrification was promoted by substrate availability. On the other hand, N2O flux was promoted by lower soil C:N ratio and higher soil pH in DBL and UDF. CO2 flux was the highest in DF (241 mg C m−2 h−1) and was the lowest in DBL (94 mg C m−2 h−1), whereas CH4 flux was the highest in DBL (0.91 mg C m−2 h−1) and was the lowest in DF (0.01 mg C m−2 h−1), respectively. N2O flux was not significantly different among land uses. CO2 flux relatively contributed to 91–100% of GWP. In conclusion, it is necessary to decrease CO2 flux to mitigate GWP through a rise in groundwater level and soil moisture in the region.


2021 ◽  
Author(s):  
Juliane Helm ◽  
Henrik Hartmann ◽  
Martin Göbel ◽  
Boaz Hilman ◽  
David Herrera ◽  
...  

Abstract Tree stem CO2 efflux is an important component of ecosystem carbon fluxes and has been the focus of many studies. While CO2 efflux can easily be measured, a growing number of studies have shown that it is not identical with actual in situ respiration. Complementing measurements of CO2 flux with simultaneous measurements of O2 flux provides an additional proxy for respiration, and the combination of both fluxes can potentially help getting closer to actual measures of respiratory fluxes. To date, however, the technical challenge to measure relatively small changes in O2 concentration against its high atmospheric background has prevented routine O2 measurements in field applications. Here we present a new and low-cost field-tested device for autonomous real-time and quasi-continuous long-term measurements of stem respiration by combining CO2 (NDIR based) and O2 (quenching based) sensors in a tree stem chamber. Our device operates as a cyclic closed system and measures changes in both CO2 and O2 concentration within the chamber over time. The device is battery-powered with a > 1 week power independence and data acquisition is conveniently achieved by an internal logger. Results from both field and laboratory tests document that our sensors provide reproducible measurements of CO2 and O2 exchange fluxes under varying environmental conditions.


2011 ◽  
Vol 8 (1) ◽  
pp. 41-53 ◽  
Author(s):  
M. Demarty ◽  
J. Bastien ◽  
A. Tremblay

Abstract. Surface water pCO2 and pCH4 measurements were taken in the boreal zone of Québec, Canada, from summer 2006 to summer 2008 in Eastmain 1 reservoir and two nearby lakes. The goal of this follow-up was to evaluate annual greenhouse gas (GHG) emissions, including spring emissions (N.B. gross emissions for reservoir), through flux calculations using the thin boundary layer model. Our measurements underscored the winter CO2 accumulation due to ice cover and the importance of a reliable estimate of spring diffusive emissions as the ice breaks up. We clearly demonstrated that in our systems, diffusive CH4 flux (in terms of CO2 equivalent) were of minor importance in the GHG emissions (without CH4 accumulation under ice), with diffusive CO2 flux generally accounting for more than 95% of the annual diffusive flux. We also noted the extent of spring diffusive CO2 emissions (23% to 52%) in the annual carbon budget.


2012 ◽  
Vol 9 (2) ◽  
pp. 1439-1482 ◽  
Author(s):  
D. Y. F. Lai ◽  
N. T. Roulet ◽  
E. R. Humphreys ◽  
T. R. Moore ◽  
M. Dalva

Abstract. Accurate quantification of soil-atmosphere gas exchange is essential for understanding the magnitude and controls of greenhouse gas emissions. We used an automatic closed dynamic chamber system to measure the fluxes of CO2 and CH4 for several years at the ombrotrophic Mer Bleue peatland near Ottawa, Canada and found that atmospheric turbulence and chamber deployment period had a considerable influence on the observed flux rates. With a short deployment period of 2.5 min, CH4 flux exhibited strong diel patterns and both CH4 and nighttime CO2 effluxes were highly and negatively correlated with friction velocity as were the CO2 concentration gradients in the top 20 cm of peat. This suggests winds were flushing the very porous and relatively dry near surface peat layers, altering the concentration gradient and resulting in a 9 to 57% underestimate of CH4 flux at any time of day and a 13 to 21% underestimate of nighttime CO2 fluxes in highly turbulent conditions. Conversely, there was evidence of an overestimation of ~100% of CH4 and nighttime CO2 effluxes in calm atmospheric conditions possibly due to enhanced near-surface gas concentration gradient by mixing of chamber headspace air by fans. These problems were resolved by extending the deployment period to 30 min. After 13 min of chamber closure, the flux rate of CH4 and nighttime CO2 became constant and were not affected by turbulence thereafter, yielding a reliable estimate of the net biological fluxes. The measurement biases we observed likely exist to some extent in all chamber flux measurements made on porous and aerated substrate, such as peatlands, organic soils in tundra and forests, and snow-covered surfaces, but would be difficult to detect unless high frequency, semi-continuous observations are made.


Sign in / Sign up

Export Citation Format

Share Document