scholarly journals Activity size distribution of radioactive nuclide 7Be at different locations and under different meteorological conditions

2019 ◽  
Vol 24 ◽  
pp. 97
Author(s):  
A. Ioannidou ◽  
F. Groppi ◽  
M. L. Bonardi ◽  
S. Manenti ◽  
L. Gini

The activity size distributions of the natural radionuclide tracer 7Be in different size fractions (<0.4 μm, 0.4-0.7 μm, 0.7-1.1 μm, 1.1-2.1 μm, 2.1-3.1 μm, 3.1-4.2 μm, 4.2-5.8 μm, 5.8-9.0 μm >9.0 μm) were determined at different site places in Northern Italy. Samplings were carried out during the four different seasons of the year 2011. The aim of this work was to define any differences due to the different environments and different meteorological conditions and clarify the main parameters influencing the activity size distribution of radioactive aerosols.

2019 ◽  
Vol 212 ◽  
pp. 272-280 ◽  
Author(s):  
A. Ioannidou ◽  
K. Eleftheriadis ◽  
M. Gini ◽  
L. Gini ◽  
S. Manenti ◽  
...  

Author(s):  
Jiali Shen ◽  
Alessandro Bigi ◽  
Angela Marinoni ◽  
Janne Lampilahti ◽  
Jenni Kontkanen ◽  
...  

Impact of lockdown measures on the air pollutants and particle number size distribution.


Author(s):  
Mo Ji ◽  
Martin Strangwood ◽  
Claire Davis

AbstractThe effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.


2004 ◽  
Vol 4 (5) ◽  
pp. 1255-1263 ◽  
Author(s):  
B. Mayer ◽  
M. Schröder ◽  
R. Preusker ◽  
L. Schüller

Abstract. Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI) in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.


1991 ◽  
Vol 113 (4) ◽  
pp. 402-411 ◽  
Author(s):  
T. J. Labus ◽  
K. F. Neusen ◽  
D. G. Alberts ◽  
T. J. Gores

A basic investigation of the factors which influence the abrasive jet mixing process was conducted. Particle size analysis was performed on abrasive samples for the “as-received” condition, at the exit of the mixing tube, and after cutting a target material. Grit size distributions were obtained through sieve analysis for both water and air collectors. Two different mixing chamber geometries were evaluated, as well as the effects of pressure, abrasive feed rate, cutting speed, and target material properties on particle size distributions. An analysis of the particle size distribution shows that the main particle breakdown is from 180 microns directly to 63 microns or less, for a nominal 80 grit garnet. This selective breakdown occurs during the cutting process, but not during the mixing process.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2014 ◽  
Vol 67 (4) ◽  
pp. 405-412
Author(s):  
Christiane Ribeiro da Silva ◽  
Vládia C. G. de Souza ◽  
Jair C. Koppe

A methodology to determine the size distribution curve of the ROM was developed in a Brazilian iron ore mine. The size of the larger fragments was determined taking photographs and setting the scale of the images to analyze their dimensions (length of their edges and areas). This was implemented according to a specific protocol of sampling that involves split and homogenization stages in situ of a considerable quantity of ore (about 259 metric tonnes). During the sampling process, larger fragments were separated and smaller size material was screened. The methodology was developed initially in order to preview the performance of a primary gyratory crusher that is fed directly from trucks. Operational conditions of the equipment such as closed and open-side settings could be adjusted previously, obtaining different product size distributions. Variability of size of the fragments affects subsequent stages of crushing and can increase circulating load in the circuit. This leads to a decrease of productivity or recovery of the ore dressing. The results showed insignificant errors of accuracy and reproducibility of the sampling protocol when applied to friable itabirite rocks.


2010 ◽  
Vol 10 (23) ◽  
pp. 11385-11399 ◽  
Author(s):  
N. Hudda ◽  
K. Cheung ◽  
K. F. Moore ◽  
C. Sioutas

Abstract. Ultrafine Particles (UFP) can display sharp gradients in their number concentrations in urban environment due to their transient nature and rapid atmospheric processing. The ability of using air pollution data generated at a central monitoring station to assess exposure relies on our understanding of the spatial variability of a specific pollutant associated with a region. High spatial variation in the concentrations of air pollutants has been reported at scales of 10s of km for areas affected by primary emissions. Spatial variability in particle number concentrations (PNC) and size distributions needs to be investigated, as the representativeness of a monitoring station in a region is premised on the assumption of homogeneity in both of these metrics. This study was conducted at six sites, one in downtown Los Angeles and five located about 40–115 km downwind in the receptor areas of Los Angeles air basin. PNC and size distribution were measured using Condensation Particle Counters (CPC) and Scanning Mobility Particle Sizer (SMPS). The seasonal and diurnal variations of PNC implied that PNC might vary significantly with meteorological conditions, even though the general patterns at the sites may remain generally similar across the year due to consistency of sources around them. Regionally transported particulate matter (PM) from upwind urban areas of Los Angeles lowered spatial variation by acting as a "homogenizing" factor during favorable meteorological conditions. Spatial variability also increased during hours of the day during which the effects of local sources predominate. The spatial variability associated with PNC (quantified using Coefficients of Divergence, CODs), averaged about 0.3, which was generally lower than that based on specific size ranges. Results showed an inverse relationship of COD with particles size, with fairly uniform values in the particle range which is associated with regional transport. Our results suggest that spatial variability, even in the receptor regions of Los Angeles Basin, should be assessed for both PNC and size distributions, and should be interpreted in context of seasonal and diurnal influences, and suitably factored if values for exposure are ascertained using a central monitoring station.


Author(s):  
Runjia Liu ◽  
Yong Zang ◽  
Rui Xiao

Abstract Detailed understanding the particle mixing and segregation dynamic is essential in successfully designing and reasonably operating multicomponent fluidized bed. In this work, a novel fluorescent tracer technique combining image processing method has been used to investigate the mixing and segregation behavior in a binary fluidized bed with wide size distributions. The particle number percentage in each layer for different gas velocities is obtained by an image processing method. Fluidization, mixing and segregation behavior has been discussed in terms of bed pressure drop, gas velocity and mixing index. Different types of binary particle systems, including the jetsam and the flotsam-rich system, are analyzed and compared. The mixing indexes at different minimum fluidization velocities are also analyzed and compared with other work. The results show that the theoretical minimum fluidization velocity calculated from the bed pressure drop cannot represent the whole fluidization for a wide size distribution binary particle system. The effect of a wide size distribution is an inflection point in the mixing index curve. There is also a dead region in the bottom of the bed that consists of particles with large size and a low degree of sphericity. The particles in the dead region are extraordinarily difficult to fluidize and should be considered in the design of fluidized beds in industrial applications.


1982 ◽  
Vol 60 (8) ◽  
pp. 1101-1107
Author(s):  
C. V. Mathai ◽  
A. W. Harrison

As part of an ongoing general research program on the effects of atmospheric aerosols on visibility and its dependence on aerosol size distributions in Calgary, this paper presents the results of a comparative study of particle size distribution and visibility in residential (NW) and industrial (SE) sections of the city using a mobile laboratory. The study was conducted in the period October–December, 1979. An active scattering aerosol spectrometer measured the size distributions and the corresponding visibilities were deduced from scattering coefficients measured with an integrating nephelometer.The results of this transit study show significantly higher suspended particle concentrations and reduced visibilities in the SE than in the NW. The mean values of the visibilities are 44 and 97 km for the SE and the NW respectively. The exponent of R (particle radius) in the power law aerosol size distribution has a mean value of −3.36 ± 0.24 in the SE compared with the corresponding value of −3.89 ± 0.39 for the NW. These results arc in good agreement with the observations of Alberta Environment; however, they are in contradiction with a recent report published by the City of Calgary.


Sign in / Sign up

Export Citation Format

Share Document