scholarly journals Methodology for determining rom size distribution

2014 ◽  
Vol 67 (4) ◽  
pp. 405-412
Author(s):  
Christiane Ribeiro da Silva ◽  
Vládia C. G. de Souza ◽  
Jair C. Koppe

A methodology to determine the size distribution curve of the ROM was developed in a Brazilian iron ore mine. The size of the larger fragments was determined taking photographs and setting the scale of the images to analyze their dimensions (length of their edges and areas). This was implemented according to a specific protocol of sampling that involves split and homogenization stages in situ of a considerable quantity of ore (about 259 metric tonnes). During the sampling process, larger fragments were separated and smaller size material was screened. The methodology was developed initially in order to preview the performance of a primary gyratory crusher that is fed directly from trucks. Operational conditions of the equipment such as closed and open-side settings could be adjusted previously, obtaining different product size distributions. Variability of size of the fragments affects subsequent stages of crushing and can increase circulating load in the circuit. This leads to a decrease of productivity or recovery of the ore dressing. The results showed insignificant errors of accuracy and reproducibility of the sampling protocol when applied to friable itabirite rocks.

2009 ◽  
Vol 26 (11) ◽  
pp. 2340-2352 ◽  
Author(s):  
Anu-Maija Sundström ◽  
Timo Nousiainen ◽  
Tuukka Petäjä

Abstract The objective of this work is to investigate whether a commercial ceilometer-type lidar can be used as a quantitative aerosol measurement instrument. To this end, lidar backscattering measurements are compared with exact theoretical calculations of backscattering, which are based on in situ–measured size distributions and account for uncertainties in particle composition and shape. The results show that the differences between simulated and measured backscattering remain nearly constant and within the uncertainties involved. The differences are most plausibly explained by an error in the overlap function of the lidar and/or errors in the calibration of either the lidar or the in situ instruments used to measure the aerosol size distribution. Occasionally, large differences occur that are obviously connected to the unrepresentativeness of the in situ and lidar measurement volumes because of insufficient atmospheric mixing. The results imply that the absolute accuracy of the instrument investigated might be sufficient for quantitative aerosol measurements in some applications. A fix for the overlap function, however, would be desirable.


2019 ◽  
Vol 12 (6) ◽  
pp. 3081-3099 ◽  
Author(s):  
Charles A. Brock ◽  
Christina Williamson ◽  
Agnieszka Kupc ◽  
Karl D. Froyd ◽  
Frank Erdesz ◽  
...  

Abstract. From 2016 to 2018 a DC-8 aircraft operated by the US National Aeronautics and Space Administration (NASA) made four series of flights, profiling the atmosphere from 180 m to ∼12 km above sea level (km a.s.l.) from the Arctic to the Antarctic over both the Pacific and Atlantic oceans. This program, the Atmospheric Tomography Mission (ATom), sought to sample the troposphere in a representative manner, making measurements of atmospheric composition in each season. This paper describes the aerosol microphysical measurements and derived quantities obtained during this mission. Dry size distributions from 2.7 nm to 4.8 µm in diameter were measured in situ at 1 Hz using a battery of instruments: 10 condensation particle counters with different nucleation diameters, two ultra-high-sensitivity aerosol size spectrometers (UHSASs), one of which measured particles surviving heating to 300 ∘C, and a laser aerosol spectrometer (LAS). The dry aerosol measurements were complemented by size distribution measurements from 0.5 to 930 µm diameter at near-ambient conditions using a cloud, aerosol, and precipitation spectrometer (CAPS) mounted under the wing of the DC-8. Dry aerosol number, surface area, and volume, and optical scattering and asymmetry parameters at several wavelengths from the near-UV to the near-IR ranges were calculated from the measured dry size distributions (2.7 nm to 4.8 µm). Dry aerosol mass was estimated by combining the size distribution data with particle density estimated from independent measurements of aerosol composition with a high-resolution aerosol mass spectrometer and a single-particle soot photometer. We describe the instrumentation and fully document the aircraft inlet and flow distribution system, the derivation of uncertainties, and the calculation of data products from combined size distributions. Comparisons between the instruments and direct measurements of some aerosol properties confirm that in-flight performance was consistent with calibrations and within stated uncertainties for the two deployments analyzed. The unique ATom dataset contains accurate, precise, high-resolution in situ measurements of dry aerosol size distributions, and integral parameters, and estimates and measurements of optical properties, for particles < 4.8 µm in diameter that can be used to evaluate aerosol abundance and processes in global models.


2020 ◽  
Author(s):  
Denisa Elena Moacă ◽  
Sorin Nicolae Vâjâiac ◽  
Andreea Calcan ◽  
Valeriu Filip

&lt;p&gt;The influence of aerosol on the various aspects of the atmospheric properties as well as on the energetic balance is widely recognised in the scientific community and this issue is currently subject to worldwide intense investigations. Among the multiple ways aerosol particles are impacting the atmospheric environment, their interference with the phase transformations of the atmospheric water is of particular importance. Cloud microphysics, on the other hand, is one of the key components in weather forecast and, therefore, in pursuing daily domestic activities ranging from agriculture to energy harvesting and aviation. The micro-physical processes taking place in clouds are strongly influenced by the spatiotemporal variation of the size distribution of the cloud droplets. In this context, as in situ investigations of clouds seem appropriate, one of the most useful types of instruments is casted into the generic name of Cloud and Aerosol Spectrometer (CAS) that can be mounted on specialized research aircraft. The CAS working principle relies basically on measuring the forward scattering cross section (FWSCS) of light with a certain wavelength on a cloud particle and comparing it to the FWSCS computed for pure water spheres. The eventual matching of these values leads to assigning a certain value for the measured particle&amp;#8217;s diameter. The light wavelength is usually chosen in a range where pure water has virtually no absorption. However, atmospheric aerosol frequently mixes up with cloud droplets (starting even from the nucleation processes) and alters their optical properties. By increasing absorption and/or refractivity with respect to those of pure water, one can easily show that the FWSCS-diameter diagram changes drastically by becoming smoother and with an overall significant decrease in absolute values. This means that a CAS will systematically count &amp;#8220;contaminated&amp;#8221; cloud droplets in a lower range of diameters, thus distorting their real size distribution. This effect is inherently degrading the objectivity of CAS measurements and should be more pronounced when levels of sub-micrometer sized aerosol increase at the cloud altitude. The present study aims at pointing out such correlation in order to estimate the reliability of size distributions (and of the ensuing cloud microphysical properties) obtained by CAS.&lt;/p&gt;


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 629
Author(s):  
Alexander S. Shinkaryov ◽  
Margarita V. Cherkasova ◽  
Ivan A. Pelevin ◽  
Dmitriy Y. Ozherelkov ◽  
Stanislav V. Chernyshikhin ◽  
...  

This work aims to study the possibility of using an electrostatic drum-type separator to prepare a powder with a narrow size distribution curve for usage in additive manufacturing. The size distributions of the uncoated commercial aluminum powders ASP-30, ASP-22, and ASP-5 were analyzed. It was shown that the powders ASP-30 and ASP-22 have similar asymmetric distributions with a SPAN of 1.480 and 1.756, respectively. ASP-5 powder, in turn, has a narrow distribution with a SPAN of 0.869. ASP-30 powder was chosen for further experiment because, traditionally, separators are used to classify large-sized materials with particle size more than 100 μm. The optimal mode of electrostatic classification was proposed for the selected powder. Various classification methods, including centrifugal and electrostatic, were compared. The powders before and after classification were studied by XRD, SEM, TEM, and TG–DSC analyses. The obtained results showed that electrostatic classification does not lead to the formation of coatings on the processed powders. Electrostatic separation effectively narrows the particle size distribution, making it a suitable and valuable method to classify initial powders for additive manufacturing.


2004 ◽  
Vol 19 (11) ◽  
pp. 3242-3254 ◽  
Author(s):  
A.J. Allen ◽  
J.C. McLaughlin ◽  
D.A. Neumann ◽  
R.A. Livingston

The effects of different particle size distributions on the real-time hydration of tricalcium silicate cement paste were studied in situ by quasi-elastic neutron scattering. The changing state of water in the cement system was followed as a function both of cement hydration time and of temperature for different initial particle size distributions. It was found that the length of the initial, dormant, induction period, together with the kinetics of hydration product nucleation and growth, depends on the hydration temperature but not on the particle size distribution. However, initial particle size does affect the total amount of cement hydrated, with finer particle size producing more hydrated cement. Furthermore, the diffusion-limited rate of hydration at later hydration time is largely determined by the initial tricalcium silicate particle size distribution.


2003 ◽  
Vol 3 (4) ◽  
pp. 1037-1049 ◽  
Author(s):  
M. Seifert ◽  
J. Ström ◽  
R. Krejci ◽  
A. Minikin ◽  
A. Petzold ◽  
...  

Abstract. In-situ observations of aerosol particles contained in cirrus crystals are presented and compared to interstitial aerosol size distributions (non-activated particles in between the cirrus crystals). The observations were conducted in cirrus clouds in the Southern and Northern Hemisphere mid-latitudes during the INCA project. The first campaign in March and April 2000 was performed from Punta Arenas, Chile (54°S) in pristine air. The second campaign in September and October 2000 was performed from Prestwick, Scotland (53°N) in the vicinity of the North Atlantic flight corridor. Size distribution measurements of crystal residuals (particles remaining after evaporation of the crystals) show that small aerosol particles (Dp< 0.1 mm) dominate the number density of residuals. The crystal residual size distributions were significantly different in the two campaigns. On average the residual size distributions were shifted towards larger sizes in the Southern Hemisphere. For a given integral residual number density, the calculated particle volume was on average three times larger in the Southern Hemisphere. This may be of significance to the vertical redistribution of aerosol mass by clouds in the tropopause region. In both campaigns the mean residual size increased slightly with increasing crystal number density. The form of the residual size distribution did not depend on temperature as one might have expected considering different modes of nucleation. The observations of ambient aerosol particles were consistent with the expected higher pollution level in the Northern Hemisphere. The fraction of residual particles only contributes to approximately a percent or less of the total number of particles, which is the sum of the residual and interstitial particles. Excellent agreement between the CVI and FSSP-300 probes was found supporting the assumption that each crystal is associated with only one residual particle.


2015 ◽  
Vol 15 (12) ◽  
pp. 16505-16550 ◽  
Author(s):  
A. M. Fridlind ◽  
A. S. Ackerman ◽  
A. Grandin ◽  
F. Dezitter ◽  
M. Weber ◽  
...  

Abstract. Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at −10 to −50 °C. Power loss events commonly occur during flight through radar reflectivity (Ze) less than 20–30 dBZ and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010–2012 Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-Ze regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations circa 11 km, the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100–500 μm. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of Ze, mean Doppler velocity, and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size distribution features in Part 2.


2015 ◽  
Vol 15 (20) ◽  
pp. 11713-11728 ◽  
Author(s):  
A. M. Fridlind ◽  
A. S. Ackerman ◽  
A. Grandin ◽  
F. Dezitter ◽  
M. Weber ◽  
...  

Abstract. Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at −10 to −50 °C. Power loss events commonly occur during flight through radar reflectivity (Ze) less than 20–30 dBZ and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010–2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-Ze regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 km), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100–500 μm. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of Ze, mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).


2014 ◽  
Vol 7 (3) ◽  
pp. 2339-2379 ◽  
Author(s):  
R. Checa-Garcia ◽  
A. Tokay ◽  
F. J. Tapiador

Abstract. This paper investigates the binning effects on drop size distribution (DSD) measurements obtained by Joss-Waldvogel disdrometer (JWD), Precipitation Occurrence Sensor System (POSS), Thies disdrometer (Thies), Parsivel OTT disdrometer, two-dimensional video disdrometer (2DVD) and optical spectro-pluviometer (OSP) instruments, therefore the evaluation comprises non-regular bin sizes and the effect of minimum and maximum measured sizes of drops. To achieve this goal, 2DVD measurements and simulated gamma size distributions were considered. The analysis of simulated gamma DSD binned according each instrument was performed to understand the role of discretisation and truncation effects together on the integral rainfall parameters and estimators of the DSD parameters. In addition, the drop-by-drop output of the 2DVD is binned to simulate the raw output of the other disdrometers which allowed us estimate sampling and binning effects on selected events from available dataset. From simulated DSD it has been found that binning effects exist in integral rainfall parameters and in the evaluation of DSD parameters of a gamma distribution. This study indicates that POSS and JWD exhibit underestimation of concentration and mean diameter due to binning. Thies and Parsivel report a positive bias for rainfall and reflectivity (reaching 5% for heavy rainfall intensity events). Regarding to DSD parameters, distributions of estimators for the shape and scale parameters were analyzed by moment, truncated moment and maximum likelihood methods. They reported noticeable differences between instruments for all methodologies of estimation applied. The measurements of 2DVD allow sampling error estimation of instruments with smaller capture areas than 2DVD. The results show that the instrument differences due to sampling were a~relevant uncertainty but that concentration, reflectivity and mass-weighted diameter were sensitive to binning.


2019 ◽  
Author(s):  
Charles A. Brock ◽  
Christina Williamson ◽  
Agnieszka Kupc ◽  
Karl Froyd ◽  
Frank Erdesz ◽  
...  

Abstract. From 2016–2018 a DC-8 aircraft operated by the U.S. National Aeronautics and Space Administration (NASA) made four series of flights, profiling the atmosphere from 150 m to ~ 12 km above sea level from the Arctic to the Antarctic over both the Pacific and Atlantic Oceans. This program, the Atmospheric Tomography (ATom) mission, sought to sample the troposphere in a representative manner, making measurements of atmospheric composition in each season. This paper describes the aerosol microphysical measurements and derived quantities obtained during this mission. Dry size distributions from 2.7 nm to 4.8 µm in diameter were measured in-situ at 1 Hz using a battery of instruments: 10 condensation particle counters with different nucleation diameters, two ultra-high sensitivity aerosol size spectrometers (UHSAS), one of which measured particles surviving heating to 300 °C, and a laser aerosol spectrometer (LAS). The dry aerosol measurements were complemented by size distribution measurements from 0.5–930 µm diameter at near-ambient conditions using a cloud, aerosol, and precipitation spectrometer (CAPS) mounted under the wing of the DC-8. Dry aerosol number, surface area, and volume, and optical scattering and asymmetry parameter at several wavelengths from the near-UV to the near-IR were calculated from the measured dry size distributions (2.7 nm to 4.8 µm). Dry aerosol mass was estimated by combining the size distribution data with particle density estimated from independent measurements of aerosol composition with a high-resolution aerosol mass spectrometer and a single particle soot photometer. This paper briefly describes the instrumentation and fully documents the aircraft inlet and flow distribution system, the derivation of uncertainties, and the calculation of data products from combined size distributions. Comparisons between the instruments and direct measurements of some aerosol properties confirm that in-flight performance was consistent with calibrations and within stated uncertainties for the two deployments analyzed. The unique ATom dataset contains accurate, precise, high-resolution in-situ measurements of dry aerosol size distributions, and integral parameters, and estimates and measurements of optical properties, for particles


Sign in / Sign up

Export Citation Format

Share Document