scholarly journals Relativistic Hartree-Bogoliubov description of deformed light nuclei

2020 ◽  
Vol 13 ◽  
pp. 1
Author(s):  
G. A. Lalazissis ◽  
D. Vretenar ◽  
P. Ring

The Relativistic Hartree-Bogoliubov model is applied in the analysis of ground- state properties of light nuclei with 4 < Ζ < 11. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction DIS. Neutron separation energies, quadrupole deformations, nuclear matter radii, and differences in radii of proton and neutron distributions are compared with recent experimental data.

2008 ◽  
Vol 17 (08) ◽  
pp. 1441-1452 ◽  
Author(s):  
J. LI ◽  
B. Y. SUN ◽  
J. MENG

The properties of pairing correlations in symmetric nuclear matter are studied in the relativistic mean field (RMF) theory with the effective interaction, PK1. Considering the well-known problem that the pairing gap at the Fermi surface calculated with RMF effective interactions is three times larger than that with the Gogny force, an effective factor in the particle–particle channel is introduced. For the RMF calculation with PK1, an effective factor of 0.76 gives a maximum pairing gap of 3.2 MeV at a Fermi momentum of 0.9 fm-1, which is consistent with the result with the Gogny force.


Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


1990 ◽  
Vol 05 (17) ◽  
pp. 3391-3399 ◽  
Author(s):  
AMRUTA MISHRA ◽  
H. MISHRA ◽  
S.P. MISRA

We discuss here some nonperturbative techniques of field theory, where we dress nuclear matter as a whole with off-mass-shell pions. Here s-wave pion pairs simulate the effect of σ-meson of the mean field approach of Walecka. The signatures are in agreement with earlier results along with new physical insight.


2006 ◽  
Vol 21 (31n33) ◽  
pp. 2513-2546 ◽  
Author(s):  
G. Röpke ◽  
P. Schuck

Quantum condensates in nuclear matter are treated beyond the mean-field approximation, with the inclusion of cluster formation. The occurrence of a separate binding pole in the four-particle propagator in nuclear matter is investigated with respect to the formation of a condensate of α-like particles (quartetting), which is dependent on temperature and density. Due to Pauli blocking, the formation of an α-like condensate is limited to the low-density region. Consequences for finite nuclei are considered. In particular, excitations of self-conjugate 2n-Z–2n-N nuclei near the n-α-breakup threshold are candidates for quartetting. We review some results and discuss their consequences. Exploratory calculations are performed for the density dependence of the α condensate fraction at zero temperature to address the suppression of the four-particle condensate below nuclear-matter density.


2018 ◽  
Vol 193 ◽  
pp. 05001 ◽  
Author(s):  
S. Bottoni ◽  
N. Cieplicka-Oryńczak ◽  
G. Bocchi ◽  
S. Leoni ◽  
B. Fornal ◽  
...  

Recent results on the structure of 47Ca will be presented. The nucleus of interest was populated via the cold-neutron capture 46Ca(n,γ) reaction, on a rare 46Ca target, during the EXILL experimental campaign at the nuclear reactor of Institut Laue- Langevin in Grenoble. High-resolution γ-ray spectroscopy, performed with a composite array of HPGe detectors, enabled the identification of new transitions deexciting states between the neutron-capture level and the ground state. Experimental data will be compared with a novel microscopic theoretical model, currently under development, specifically designed to describe the low-lying structure of odd-mass nuclei with one valence particle/hole outside a spherical doubly-magic core, using the Skyrme effective interaction self-consistently.


2011 ◽  
Vol 20 (08) ◽  
pp. 1687-1699
Author(s):  
PRIANKA ROY ◽  
SHASHI K. DHIMAN

The high-spin state properties of the neutron–proton (np) residual effective interaction are analyzed in N = Z72 Kr , 76 Sr , and 80 Zr nuclei. The self-consistent microscopic Hartree–Fock–Bogoliubov (HFB) equations have been solved by employing monopole corrected two-body effective interaction. A band crossing is observed in 72 Kr nucleus at J = 14ℏ state with monopole corrected "HPU1" and "HPU2" effective interactions. The VAP–HFB theory suggests that the "4p–4h" excitations by np residual interaction are the essential ingredients of the mean-field description of the occurence of backbending in 72 Kr nucleus.


1986 ◽  
Vol 01 (09) ◽  
pp. 509-515 ◽  
Author(s):  
J. BARTEL ◽  
G. WENES ◽  
M. WAROQUIER ◽  
J. RYCKEBUSCH

The influence of the nuclear matter compression modulus K∞ on the difference in the charge density distribution of 208 Pb −206 Pb is investigated in a self-consistent mean field approach with a variety of density dependent effective interactions of the generalized Skyrme type. It is found that in addition to a dependence on the compressibility associated with a given Skyrme force the results also depend strongly on the pairing correlations which, through the level density, are influenced by the nuclear matter effective mass.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750022 ◽  
Author(s):  
B. K. Agrawal ◽  
S. K. Samaddar ◽  
J. N. De ◽  
C. Mondal ◽  
Subhranil De

In the framework of an equation of state (EoS) constructed from a momentum and density-dependent finite-range two-body effective interaction, the quantitative magnitudes of the different symmetry elements of infinite nuclear matter are explored. The parameters of this interaction are determined from well-accepted characteristic constants associated with homogeneous nuclear matter. The symmetry energy coefficient [Formula: see text], its density slope [Formula: see text], the symmetry incompressibility [Formula: see text] as well as the density-dependent incompressibility [Formula: see text] evaluated with this EoS are seen to be in good harmony with those obtained from other diverse perspectives. The higher order symmetry energy coefficients [Formula: see text], etc., are seen to be not very significant in the domain of densities relevant to finite nuclei, but gradually build up at supra-normal densities. The analysis carried out with a Skyrme-inspired energy density functional (EDF) obtained with the same input values for the empirical bulk data associated with nuclear matter yields nearly the same results.


Sign in / Sign up

Export Citation Format

Share Document