scholarly journals LSD1, a double-edged sword, confers dynamic chromatin regulation but commonly promotes aberrant cell growth

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2016 ◽  
Author(s):  
Meghan M Kozub ◽  
Ryan M Carr ◽  
Gwen L Lomberk ◽  
Martin E Fernandez-Zapico

Histone-modifying enzymes play a critical role in chromatin remodeling and are essential for influencing several genome processes such as gene expression and DNA repair, replication, and recombination. The discovery of lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, dramatically revolutionized research in the field of epigenetics. LSD1 plays a pivotal role in a wide range of biological operations, including development, cellular differentiation, embryonic pluripotency, and disease (for example, cancer). This mini-review focuses on the role of LSD1 in chromatin regulatory complexes, its involvement in epigenetic changes throughout development, and its importance in physiological and pathological processes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoping Xu ◽  
Kai Ni ◽  
Yafeng He ◽  
Jianke Ren ◽  
Chongkui Sun ◽  
...  

AbstractThe Immunodeficiency Centromeric Instability Facial Anomalies (ICF) 4 syndrome is caused by mutations in LSH/HELLS, a chromatin remodeler promoting incorporation of histone variant macroH2A. Here, we demonstrate that LSH depletion results in degradation of nascent DNA at stalled replication forks and the generation of genomic instability. The protection of stalled forks is mediated by macroH2A, whose knockdown mimics LSH depletion and whose overexpression rescues nascent DNA degradation. LSH or macroH2A deficiency leads to an impairment of RAD51 loading, a factor that prevents MRE11 and EXO1 mediated nascent DNA degradation. The defect in RAD51 loading is linked to a disbalance of BRCA1 and 53BP1 accumulation at stalled forks. This is associated with perturbed histone modifications, including abnormal H4K20 methylation that is critical for BRCA1 enrichment and 53BP1 exclusion. Altogether, our results illuminate the mechanism underlying a human syndrome and reveal a critical role of LSH mediated chromatin remodeling in genomic stability.


2021 ◽  
Vol 22 (11) ◽  
pp. 5722
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Cinzia Marinaro ◽  
Claudio Curci ◽  
Marco Invernizzi ◽  
...  

Osteoarthritis (OA) is a painful and disabling disease that affects millions of patients. Its etiology is largely unknown, but it is most likely multifactorial. OA pathogenesis involves the catabolism of the cartilage extracellular matrix and is supported by inflammatory and oxidative signaling pathways and marked epigenetic changes. To delay OA progression, a wide range of exercise programs and naturally derived compounds have been suggested. This literature review aims to analyze the main signaling pathways and the evidence about the synergistic effects of these two interventions to counter OA. The converging nutrigenomic and physiogenomic intervention could slow down and reduce the complex pathological features of OA. This review provides a comprehensive picture of a possible signaling approach for targeting OA molecular pathways, initiation, and progression.


2019 ◽  
Vol 122 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Adrian L. Harris

AbstractCancer metabolism has undergone a resurgence in the last decade, 70 years after Warburg described aerobic glycolysis as a feature of cancer cells. A wide range of techniques have elucidated the complexity and heterogeneity in preclinical models and clinical studies. What emerges are the large differences between tissues, tumour types and intratumour heterogeneity. However, synergies with inhibition of metabolic pathways have been found for many drugs and therapeutic approaches, and a critical role of window studies and translational trial design is key to success.


2006 ◽  
Vol 235 (10) ◽  
pp. 2722-2735 ◽  
Author(s):  
Binnur Eroglu ◽  
Guanghu Wang ◽  
Naxin Tu ◽  
Xutong Sun ◽  
Nahid F. Mivechi

2012 ◽  
Vol 18 (2) ◽  
pp. 81 ◽  
Author(s):  
Daniel Lunney

How people coexist and interact with animals has become an intensely debated issue in recent times, particularly with the rise of the animal protection movement following the publication of Peter Singer’s book Animal Liberation in 1975. This paper discusses some shortcomings of the philosophical positions taken in this complex debate. Singer has helped put animals on a new footing as a group that cannot morally be ignored, but his focus is mainly on individual, familiar animals that are used or abused by humans. The argument of this paper is that the ethics of managing wildlife hinges on a broader view of animals, and their contexts, than is apparent from Singer’s text. Wildlife managers aim to conserve populations of a wide range of species, and their habitats, but some mechanisms for achieving these aims, such as research and the control of invasive animals, are frequently opposed by elements of the animal protection movement. We need to adapt our attitude to animals, particularly wildlife, away from the traditional legacy of a few familiar species to embrace an ethic that is more ecological and relevant to Australian contexts. The case argued here has been to see the critical role of context — geographical, ecological, historical, relational — as a basis for a degree of reconciliation between conservation-oriented wildlife managers and the rising interest in the ethics of animal use. There is much to be gained for zoologists, wildlife managers and conservation biologists by framing key elements of their case in ethical arguments. Conversely, the challenge for those in the animal protection movement is to expand their philosophical ideas to include the ethical imperative of the conservation of populations of wildlife.


Life Sciences ◽  
2008 ◽  
Vol 83 (9-10) ◽  
pp. 305-312 ◽  
Author(s):  
Solomon S. Solomon ◽  
Gipsy Majumdar ◽  
Antonio Martinez-Hernandez ◽  
Rajendra Raghow

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2021 ◽  
Author(s):  
Jing Nie ◽  
Yoshitomo Ueda ◽  
Alexander Solivais ◽  
Eri Hashino

Abstract Mutations in the chromatin remodeling enzyme CHD7 cause CHARGE syndrome, which affects multiple organs including the inner ear. We investigated how CHD7 mutations affect otic development in human inner ear organoids. We found loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggested that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells revealed disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescued mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage differentiation and deafness gene expression.


Sign in / Sign up

Export Citation Format

Share Document