scholarly journals RNAi targeting Caenorhabditis elegans α-arrestins has little effect on lifespan

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that feeding worms with bacteria expressing double-stranded RNA against each of 24 out of total 29 C. elegans α-arrestins had little effect on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1515
Author(s):  
Sangsoon Park ◽  
Yoonji Jung ◽  
Seon Woo A. An ◽  
Heehwa G. Son ◽  
Wooseon Hwang ◽  
...  

Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had little effect on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 993
Author(s):  
Yuri Lee ◽  
Hyeseon Jeong ◽  
Kyung Hwan Park ◽  
Kyung Won Kim

Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that mediates numerous biological processes in all living cells. Multiple NAD+ biosynthetic enzymes and NAD+-consuming enzymes are involved in neuroprotection and axon regeneration. The nematode Caenorhabditis elegans has served as a model to study the neuronal role of NAD+ because many molecular components regulating NAD+ are highly conserved. This review focuses on recent findings using C. elegans models of neuronal damage pertaining to the neuronal functions of NAD+ and its precursors, including a neuroprotective role against excitotoxicity and axon degeneration as well as an inhibitory role in axon regeneration. The regulation of NAD+ levels could be a promising therapeutic strategy to counter many neurodegenerative diseases, as well as neurotoxin-induced and traumatic neuronal damage.


2017 ◽  
Vol 474 (4) ◽  
pp. 493-515 ◽  
Author(s):  
Rossana Zaru ◽  
Michele Magrane ◽  
Claire O'Donovan ◽  

Protein kinases form one of the largest protein families and are found in all species, from viruses to humans. They catalyze the reversible phosphorylation of proteins, often modifying their activity and localization. They are implicated in virtually all cellular processes and are one of the most intensively studied protein families. In recent years, they have become key therapeutic targets in drug development as natural mutations affecting kinase genes are the cause of many diseases. The vast amount of data contained in the primary literature and across a variety of biological data collections highlights the need for a repository where this information is stored in a concise and easily accessible manner. The UniProt Knowledgebase meets this need by providing the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information. Here, we describe the expert curation process for kinases, focusing on the Caenorhabditis elegans kinome. The C. elegans kinome is composed of 438 kinases and almost half of them have been functionally characterized, highlighting that C. elegans is a valuable and versatile model organism to understand the role of kinases in biological processes.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77706-77715 ◽  
Author(s):  
Supinder Kaur ◽  
Aamir Nazir

Studies employing transgenicC. elegansmodel show that trehalose, a protein stabilizer, alleviates manifestations associated with Parkinson's diseaseviaits inherent activity and through induction of autophagic machinery.


2021 ◽  
Author(s):  
Omar Pena-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Tianyou Yao ◽  
Henry He ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. In the nematode Caenorhabditis elegans, 113 somatic cells undergo apoptosis during embryogenesis and are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells in C. elegans embryos using a real-time imaging technique. Specifically, double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner membrane to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant delays in the degradation of apoptotic cells, demonstrating the important contribution of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, CED-1s adaptor CED-6, and the large GTPase dynamin (DYN-1) promote the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Our findings reveal that, unlike the single-membrane, LC3- associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, canonical autophagosomes function in the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream factors that initiate this crosstalk.


2005 ◽  
Vol 25 (7) ◽  
pp. 2583-2592 ◽  
Author(s):  
Landon L. Moore ◽  
Gerald Stanvitch ◽  
Mark B. Roth ◽  
David Rosen

ABSTRACT Prior to microtubule capture, sister centromeres resolve from one another, coming to rest on opposite surfaces of the condensing chromosome. Subsequent assembly of sister kinetochores at each sister centromere generates a geometry favorable for equal levels of segregation of chromatids. The holocentric chromosomes of Caenorhabditis elegans are uniquely suited for the study of centromere resolution and subsequent kinetochore assembly. In C. elegans, only two proteins have been identified as being necessary for centromere resolution, the kinase AIR-2 (prophase only) and the centromere protein HCP-4/CENP-C. Here we found that the loss of proteins involved in chromosome cohesion bypassed the requirement for HCP-4/CENP-C but not for AIR-2. Interestingly, the loss of cohesin proteins also restored the localization of HCP-6 to the kinetochore. The loss of the condensin II protein HCP-6 or MIX-1/SMC2 impaired centromere resolution. Furthermore, the loss of HCP-6 or MIX-1/SMC2 resulted in no centromere resolution when either nocodazole or RNA interference (RNAi) of the kinetochore protein KNL-1 perturbed spindle-kinetochore interactions. This result suggests that normal prophase centromere resolution is mediated by condensin II proteins, which are actively recruited to sister centromeres to mediate the process of resolution.


Sign in / Sign up

Export Citation Format

Share Document