scholarly journals Cadmium SAD phasing at CuKα wavelength

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 84
Author(s):  
Igor E. Eliseev ◽  
Anna N. Yudenko ◽  
Valeria M. Ukrainskaya ◽  
Oleg B. Chakchir

Single-wavelength anomalous diffraction (SAD) is the most common method for de novo elucidation of macromolecular structures by X-ray crystallography. It requires an anomalous scatterer in a crystal to calculate phases. A recent study by Panneerselvam et al. emphasized the utility of cadmium ions for SAD phasing at the standard synchrotron wavelength of 1 Å. Here we show that cadmium is also useful for phasing of crystals collected in-house with CuKα radiation. Using a crystal of single-domain antibody as an experimental model, we demonstrate how cadmium SAD can be conveniently employed to solve a CuKα dataset. We then discuss the factors which make this method generally applicable.

2014 ◽  
Vol 70 (10) ◽  
pp. 2544-2557 ◽  
Author(s):  
Qun Liu ◽  
Youzhong Guo ◽  
Yanqi Chang ◽  
Zheng Cai ◽  
Zahra Assur ◽  
...  

Anomalous diffraction signals from typical native macromolecules are very weak, frustrating their use inde novostructure determination. Here, native SAD procedures are described to enhance signal to noise in anomalous diffraction by using multiple crystals in combination with synchrotron X-rays at 6 keV. Increased anomalous signals were obtained at 6 keV compared with 7 keV X-ray energy, which was used for previous native SAD analyses. A feasibility test of multi-crystal-based native SAD phasing was performed at 3.2 Å resolution for a known tyrosine protein kinase domain, and real-life applications were made to two novel membrane proteins at about 3.0 Å resolution. The three applications collectively serve to validate the robust feasibility of native SAD phasing at lower energy.


2021 ◽  
Vol 9 (6) ◽  
pp. e002131
Author(s):  
Tianhang Zhai ◽  
Chao Wang ◽  
Yifeng Xu ◽  
Weifeng Huang ◽  
Zhijun Yuan ◽  
...  

BackgroundThe discovery of checkpoint inhibitors towards cytotoxic T-lymphocyte protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) has been revolutionary for the treatment of cancers. These therapies have only offered an average of 20%–30% response rates across the tumor spectrum and the combination of agonists towards the tumor-necrosis superfamily members, such as 4-1BB and CD40, has shown potent efficacy in preclinical studies; however, these agonists have exhibited high degrees of toxicity with limited efficacy in human trials. In this study, we have generated a single-domain antibody towards a unique epitope of 4-1BB that limits its potential on-target toxicity while maintaining sufficient potency. This 4-1BB binder is ideal for use in the engineering of multispecific antibodies to localize 4-1BB activation within the tumor microenvironment, as shown here by a anti-PD-L1/4-1BB bispecific candidate (PM1003).MethodsTo determine the functional activity of the 4-1BB- and PD-L1-binding elements of PM1003, in vitro luciferase reporter and primary cell assays were used to test the potency of programmed cell death 1 ligand 1 (PD-L1) blockade and PD-L1-mediated 4-1BB activation via cross-bridging. X-ray crystallography was conducted to resolve the binding epitopes of the respective binding arms, and accurate binding kinetics were determined using standard affinity measurement techniques. Human 4-1BB and/or PD-L1 knock-in mice were used in cancer models for testing the in vivo antitumor efficacy of PM1003, and safety was evaluated further.ResultsPM1003 shows potent activation of 4-1BB and blockade of PD-L1 in cell-based assays. 4-1BB activation was exerted through the bridging of PD-L1 on target cells and 4-1BB on effector cells. No PD-L1-independent activation of 4-1BB was observed. Through X-ray crystallography, a unique binding epitope in the cysteine-rich domain 4 (CRD4) region was resolved that provides high potency and potentially low on-target toxicity as determined by primary immune cell assays and toxicity evaluation in vivo.ConclusionsA unique single-domain antibody was discovered that binds to the CRD4 domain of 4-1BB. When incorporated into a 4-1BB/PD-L1 bispecific (PM1003), we have shown the potent inhibition of PD-L1 activity with 4-1BB agonism upon cross-bridging with PD-L1 in vitro. Antitumor activity with minimal toxicity was found in vivo. Thus, PM1003 is a uniquely differentiating and next generation therapeutic agent for cancer therapy.


2014 ◽  
Vol 70 (a1) ◽  
pp. C613-C613
Author(s):  
Jan Stránský ◽  
Tomáš Kovaľ ◽  
Lars Østergaard ◽  
Jarmila Dušková ◽  
Tereza Skálová ◽  
...  

Development of X-ray diffraction technologies have made de novo phasing of protein structures by single-wavelength anomalous dispersion by sulphur (S-SAD) more common. As anomalous differences in the sulphur atomic factors are in the order of errors of measurement, careful intensity reading and data processing are crucial. S-SAD was used for de novo phasing of a small 12 kDa protein with 4 sulphur atoms per molecule at 2.3 Å, where the data did not enable a straightforward structure solution. Data processing was performed using XDS [1] and scaling using XSCALE. The sulphur substructure was determined by SHELXD [2] and phases were obtained from SHELXE [2]. Both algorithms strongly depend on input parameters and default values did not lead to the correct phases. Therefore a systematic search of optimal values of several parameters was used to find a solution. This method helped to confirm sulphur substructure and to differentiate the handedness of the solutions. Moreover, a script for comfortable conversion of SHELX outputs to MTZ format was developed, using programmes included in the CCP4 package [3]. The previously unsolvable protein structure was successfully resolved with the described procedure. This work was supported by the Grant Agency of the Czech Technical University in Prague, (SGS13/219/OHK4/3T/14), the Czech Science Foundation (P302/11/0855), project BIOCEV CZ.1.05/1.1.00/02.0109 from the ERDF.


2008 ◽  
Vol 17 (7) ◽  
pp. 1175-1187 ◽  
Author(s):  
Valentina Tereshko ◽  
Serdar Uysal ◽  
Akiko Koide ◽  
Katrina Margalef ◽  
Shohei Koide ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1227-1233 ◽  
Author(s):  
Nicholas F. Polizzi ◽  
William F. DeGrado

The de novo design of proteins that bind highly functionalized small molecules represents a great challenge. To enable computational design of binders, we developed a unit of protein structure—a van der Mer (vdM)—that maps the backbone of each amino acid to statistically preferred positions of interacting chemical groups. Using vdMs, we designed six de novo proteins to bind the drug apixaban; two bound with low and submicromolar affinity. X-ray crystallography and mutagenesis confirmed a structure with a precisely designed cavity that forms favorable interactions in the drug–protein complex. vdMs may enable design of functional proteins for applications in sensing, medicine, and catalysis.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Mark S. Hunter ◽  
Chun Hong Yoon ◽  
Hasan DeMirci ◽  
Raymond G. Sierra ◽  
E. Han Dao ◽  
...  

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Sebastian H.W. Kraatz ◽  
Sarah Bianchi ◽  
Michel O. Steinmetz

Coiled-coils are ubiquitous protein–protein interaction motifs found in many eukaryotic proteins. The elongated, flexible and often irregular nature of coiled-coils together with their tendency to form fibrous arrangements in crystals imposes challenges on solving the phase problem by molecular replacement. Here, we report the successful combinatorial use of native and rational engineered disulfide bridges together with sulfur-SAD phasing as a powerful tool to stabilize and solve the structure of coiled-coil domains in a straightforward manner. Our study is a key example of how modern sulfur SAD combined with mutagenesis can help to advance and simplify the structural study of challenging coiled-coil domains by X-ray crystallography.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Aron Broom ◽  
Rojo V. Rakotoharisoa ◽  
Michael C. Thompson ◽  
Niayesh Zarifi ◽  
Erin Nguyen ◽  
...  

Abstract The creation of artificial enzymes is a key objective of computational protein design. Although de novo enzymes have been successfully designed, these exhibit low catalytic efficiencies, requiring directed evolution to improve activity. Here, we use room-temperature X-ray crystallography to study changes in the conformational ensemble during evolution of the designed Kemp eliminase HG3 (kcat/KM 146 M−1s−1). We observe that catalytic residues are increasingly rigidified, the active site becomes better pre-organized, and its entrance is widened. Based on these observations, we engineer HG4, an efficient biocatalyst (kcat/KM 103,000 M−1s−1) containing key first and second-shell mutations found during evolution. HG4 structures reveal that its active site is pre-organized and rigidified for efficient catalysis. Our results show how directed evolution circumvents challenges inherent to enzyme design by shifting conformational ensembles to favor catalytically-productive sub-states, and suggest improvements to the design methodology that incorporate ensemble modeling of crystallographic data.


2014 ◽  
Vol 70 (a1) ◽  
pp. C601-C601
Author(s):  
Meitian Wang

The key step in elucidating de novo 3D X-ray structures relies on the incorporation of heavy elements into proteins or crystals. Selenomethionine incorporation or heavy metal derivatization are however not always possible and require additional efforts. Exploiting anomalous signals from intrinsically present elements like S, P, and Ca2+ from proteins and nucleic acids, as well as Cl-, SO42-, and PO42- from crystallization solutions, is therefore an appealing alternative. Such a method has been shown to be valid by collecting data from several crystals and combining them(1). Recent developments at macromolecular crystallography beamlines are however pushing the limits of what could be obtained out of a single crystal. Here we introduce a novel data collection routine for native-SAD phasing, which distributes tolerable X-ray life-doses to very high multiplicity X-ray diffraction data sets measured at 6 keV energy and at different crystal orientations on a single crystal. This allows the extraction of weak anomalous signals reliably by reducing both systematic and random measurement errors. The data collection method has been applied successfully to thirteen real-life examples including membrane proteins, a protein/DNA complex, and a large protein complex. In addition to de novo structure determination, we advocate such a data collection protocol for molecular replacement solvable structures where unbiased phase information is crucial in objective map interpretation and model building, especially for medium and low-resolution cases.


2014 ◽  
Vol 70 (a1) ◽  
pp. C607-C607 ◽  
Author(s):  
Severine Freisz ◽  
Juergen Graf ◽  
Matthew Benning ◽  
Vernon Smith

Advances in crystallographic hardware and software are enabling structural biologists to investigate more challenging projects. Recent developments in hardware and software are greatly increasing the capabilities of in-house diffraction systems making it more routine to obtain de novo structural information in the home lab. Single-wavelength anomalous diffraction (SAD) techniques with Cu Ka or Ga Ka radiation are now widely used for structure solution even in cases involving weak anomalous scatterers, like sulfur. We have now introduced the D8 Venture solution for structural biology with the PHOTON 100 detector featuring the first CMOS active pixel sensor for X-ray crystallography. Our new microfocus source, the METALJET delivers beam intensity exceeding those of typical bending-magnet beamlines. The very high intensity, the small beam focus and the lower air scatter produced by Gallium Kα radiation help to greatly reduce the background scatter. This provides greater signal to noise essential to identify weak anomalous signal. Due to the very weak anomalous scattering of S, data multiplicities in the order of 40 are typically necessary to obtain phases by S-SAD. Collecting high-multiplicity data minimizes systematic experimental errors to measure with very high accuracy the minute intensity difference between Friedel Pairs (1.0 – 1.5 %) [1]. This requires software which optimizes the collection strategy, for example with respect to overall data collection time to minimize radiation damage. The combination of a brighter, more stable X-ray source with a high sensitivity low noise detector have greatly improved the quality of data collected in-house. The high quality allows successful SAD measurements far away from the absorption edge. Here we present a low multiplicity sulfur-SAD phasing experiment on a small Thaumatin crystal showing the high quality of the data collected on the D8 VENTURE with the METALJET.


Sign in / Sign up

Export Citation Format

Share Document