scholarly journals Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 215 ◽  
Author(s):  
Hossein Gouran ◽  
Sandeep Chakraborty ◽  
Basuthkar J. Rao ◽  
Bjarni Asgeirsson ◽  
Abhaya M. Dandekar

Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors ofXylella fastidiosa(LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we presentin vivovalidation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein fromXanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providingin silicovalidation before proceeding to the laboriousin vivowork. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

2009 ◽  
Vol 87 (2) ◽  
pp. 445-457 ◽  
Author(s):  
Ali Farsi ◽  
Pratik H. Lodha ◽  
Jennifer E. Skanes ◽  
Heidi Los ◽  
Navya Kalidindi ◽  
...  

Cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL), which comprise the transsulfuration pathway of bacteria and plants, and cystathionine γ-lyase (CGL), the second enzyme of the fungal and animal reverse transsulfuration pathway, share ∼30% sequence identity and are almost indistinguishable in overall structure. One difference between the active site of Escherichia coli CBL and those of E. coli CGS and Saccharomyces cerevisiae CGL is the replacement of a pair of aromatic residues, F55 and Y338, of the former by acidic residues in CGS (D45 and E325) and CGL (E48 and E333). A series of interconverting, site-directed mutants of these 2 residues was constructed in CBL (F55D, Y338E, F55D/Y338E), CGS (D45F, E325Y and D45F/E325Y) and CGL (E48A,D and E333A,D,Y) to probe the role of these residues as determinants of reaction specificity. Mutation of either position results in a reduction in catalytic efficiency, as exemplified by the 160-fold reduction in the kcat/Kml-Cys of eCGS-D45F and the 2850- and 30-fold reductions in the kcat/Kml-Cth of the eCBL-Y338E and the yCGL-E333A,Y mutants, respectively. However, the in vivo reaction specificity of the mutants was not altered, compared with the corresponding wild-type enzymes. The ΔmetB and ΔmetC strains, the optimized CBL and CGL assay conditions, and the efficient expression and affinity purification systems described provide the necessary tools to enable the continued exploration of the determinants of reaction specificity in the enzymes of the transsulfuration pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 47-64 ◽  
Author(s):  
Youri I Pavlov ◽  
Polina V Shcherbakova ◽  
Thomas A Kunkel

Abstract Several amino acids in the active site of family A DNA polymerases contribute to accurate DNA synthesis. For two of these residues, family B DNA polymerases have conserved tyrosine residues in regions II and III that are suggested to have similar functions. Here we replaced each tyrosine with alanine in the catalytic subunits of yeast DNA polymerases α, δ, ε, and ζ and examined the consequences in vivo. Strains with the tyrosine substitution in the conserved SL/MYPS/N motif in region II in Polδ or Polε are inviable. Strains with same substitution in Rev3, the catalytic subunit of Polζ, are nearly UV immutable, suggesting severe loss of function. A strain with this substitution in Polα (pol1-Y869A) is viable, but it exhibits slow growth, sensitivity to hydroxyurea, and a spontaneous mutator phenotype for frameshifts and base substitutions. The pol1-Y869A/pol1-Y869A diploid exhibits aberrant growth. Thus, this tyrosine is critical for the function of all four eukaryotic family B DNA polymerases. Strains with a tyrosine substitution in the conserved NS/VxYG motif in region III in Polα, -δ, or -ε are viable and a strain with the homologous substitution in Rev3 is UV mutable. The Polα mutant has no obvious phenotype. The Polε (pol2-Y831A) mutant is slightly sensitive to hydroxyurea and is a semidominant mutator for spontaneous base substitutions and frameshifts. The Polδ mutant (pol3-Y708A) grows slowly, is sensitive to hydroxyurea and methyl methanesulfonate, and is a strong base substitution and frameshift mutator. The pol3-Y708A/pol3-Y708A diploid grows slowly and aberrantly. Mutation rates in the Polα, -δ, and -ε mutant strains are increased in a locus-specific manner by inactivation of PMS1-dependent DNA mismatch repair, suggesting that the mutator effects are due to reduced fidelity of chromosomal DNA replication. This could result directly from relaxed base selectivity of the mutant polymerases due to the amino acid changes in the polymerase active site. In addition, the alanine substitutions may impair catalytic function to allow a different polymerase to compete at the replication fork. This is supported by the observation that the pol3-Y708A mutation is recessive and its mutator effect is partially suppressed by disruption of the REV3 gene.


2005 ◽  
Vol 79 (20) ◽  
pp. 12721-12731 ◽  
Author(s):  
Ákos Putics ◽  
Witold Filipowicz ◽  
Jonathan Hall ◽  
Alexander E. Gorbalenya ◽  
John Ziebuhr

ABSTRACT Replication of the ∼30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.


Author(s):  
Taichi Mizobuchi ◽  
Risako Nonaka ◽  
Motoki Yoshimura ◽  
Katsumasa Abe ◽  
Shouji Takahashi ◽  
...  

Aspartate racemase (AspR) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.


2020 ◽  
Vol 12 (3) ◽  
pp. 536-545
Author(s):  
Arun D. SHARMA ◽  
Inderjeet KAUR

SARS-CoV-2 (COVID-19), member of corona virus family, is a positive single stranded RNA virus. Due to lack of drugs it is spreading its tentacles across the world. Being associated with cough, fever, and respiratory distress, this disease caused more than 15% mortality worldwide. Mpro/3CLpro has recently been regarded as a suitable target for drug design due to its vital role in virus replication. The current study focused on the inhibitory activity of eucalyptol (1,8 cineole), an essential oil component from eucalyptus oil, against Mpro/3CLprofrom SARS-CoV-2. Till date there is no work is undertaken on in-silico analysis of this compound against Mpro/3CLproof SARS-CoV-2. Molecular docking studies were conducted by using 1-click dock tool and Patchdock analysis. In-silico absorption, distribution, metabolism, excretion and toxicity (ADMET) profile were also studied. The calculated parameters such as docking score indicated effective binding of eucalyptol to COVID-19 Mpro protein. Active site prediction revealed the involvement of active site residues in ligand binding. Interactions results indicated that, Mpro/3CLpro/eucalyptol complexes forms hydrophobic interactions. ADMET studies provided guidelines and mechanistic scope for identification of potent anti-COVID 19 drug. Therefore, eucalyptol may represent potential herbal treatment to act as COVID-19 Mpro/3CLproinhibitor, a finding which must be validated in vivo.


2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2007 ◽  
Vol 189 (12) ◽  
pp. 4456-4464 ◽  
Author(s):  
Dominique Vidal-Ingigliardi ◽  
Shawn Lewenza ◽  
Nienke Buddelmeijer

ABSTRACT Apolipoprotein N-acyl transferase (Lnt) is an essential membrane-bound protein involved in lipid modification of all lipoproteins in gram-negative bacteria. Essential residues in Lnt of Escherichia coli were identified by using site-directed mutagenesis and an in vivo complementation assay. Based on sequence conservation and known protein structures, we predict a model for Lnt, which is a member of the CN hydrolase family. Besides the potential catalytic triad E267-K335-C387, four residues that directly affect the modification of Braun's lipoprotein Lpp are absolutely required for Lnt function. Residues Y388 and E389 are part of the hydrophobic pocket that constitutes the active site. Residues W237 and E343 are located on two flexible arms that face away from the active site and are expected to open and close upon the binding and release of phospholipid and/or apolipoprotein. Substitutions causing temperature-dependent effects were located at different positions in the structural model. These mutants were not affected in protein stability. Lnt proteins from other proteobacteria, but not from actinomycetes, were functional in vivo, and the essential residues identified in Lnt of E. coli are conserved in these proteins.


2002 ◽  
Vol 80 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Carlos F Santos ◽  
Carmem A Paula ◽  
Maria Cristina O. Salgado ◽  
Eduardo Brandt Oliveira

An elastase-2 has been recently described as the major angiotensin (Ang) II-forming enzyme of the rat mesenteric arterial bed (MAB) perfusate. Here, we have investigated the interaction of affinity-purified rat MAB elastase-2 with some substrates and inhibitors of both pancreatic elastases-2 and Ang II-forming chymases. The Ang II precursor [Pro11-D-Ala12]-Ang I was converted into Ang II by the rat MAB elastase-2 with a catalytic efficiency of 8.6 min–1·µM–1, and the chromogenic substrates N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide were hydrolyzed by the enzyme with catalytic efficiencies of 10.6 min–1·µM–1 and 7.6 min–1·µM–1, respectively. The non-cleavable peptide inhibitor CH-5450 inhibited the rat MAB elastase-2 activities toward the substrates Ang I (IC50 = 49 µM) and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (IC50 = 4.8 µM), whereas N-acetyl-Ala-Ala-Pro-Leu-chloromethylketone, an effective active site-directed inhibitor of pancreatic elastase-2, efficiently blocked the Ang II-generating activity of the rat MAB enzyme (IC50 = 4.5 µM). Altogether, the data presented here confirm and extend the enzymological similarities between pancreatic elastase-2 and its rat MAB counterpart. Moreover, the thus far unrealized interaction of elastase-2 with [Pro11-D-Ala12]-Ang I and CH-5450, both regarded as selective for chymases, suggests that evidence for the in vivo formation of Ang II by chymases may have been overestimated in previous investigations of Ang II-forming pathways.Key words: angiotensin, elastase-2, chymase, [Pro11-D-Ala12]-Ang I, CH-5450.


Sign in / Sign up

Export Citation Format

Share Document