scholarly journals pyGeno: A Python package for precision medicine and proteogenomics

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 381 ◽  
Author(s):  
Tariq Daouda ◽  
Claude Perreault ◽  
Sébastien Lemieux

pyGeno is a python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 381 ◽  
Author(s):  
Tariq Daouda ◽  
Claude Perreault ◽  
Sébastien Lemieux

pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standaloneprogram, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies.


2019 ◽  
Vol 7 (4) ◽  
pp. 208-213 ◽  
Author(s):  
Fabian V. Filipp

Abstract Purpose of Review We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health. Recent Findings High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine. Summary Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.


Author(s):  
Karani S. Vimaleswaran ◽  
Ruth J.F. Loos

The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.


2019 ◽  
Author(s):  
Nicholas P. Giangreco ◽  
Barry Fine ◽  
Nicholas P. Tatonetti

AbstractSummaryPrecision medicine uses patient clinical and molecular characteristics to personalize diagnosis and treatment. This emerging discipline integrates multi-modal data into large-scale studies of human disease to make accurate individual-level predictions. The success of these studies will depend on the generalizability of the results, the ability of other researchers and clinicians to replicate studies, and the understandability of the methods used. Tools for data management and standardization are needed to promote flexible, transparent, and reproducible analyses. Here we present cohorts, a python package facilitating clinical and biomarker data management to enhance standardization and reproducibility of clinical findings.AvailabilityThe python package cohorts is available at http://www.github.com/ngiangre/[email protected]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Fischer ◽  
Marc Dinh ◽  
Vincent Henry ◽  
Philippe Robert ◽  
Anne Goelzer ◽  
...  

AbstractDetailed whole-cell modeling requires an integration of heterogeneous cell processes having different modeling formalisms, for which whole-cell simulation could remain tractable. Here, we introduce BiPSim, an open-source stochastic simulator of template-based polymerization processes, such as replication, transcription and translation. BiPSim combines an efficient abstract representation of reactions and a constant-time implementation of the Gillespie’s Stochastic Simulation Algorithm (SSA) with respect to reactions, which makes it highly efficient to simulate large-scale polymerization processes stochastically. Moreover, multi-level descriptions of polymerization processes can be handled simultaneously, allowing the user to tune a trade-off between simulation speed and model granularity. We evaluated the performance of BiPSim by simulating genome-wide gene expression in bacteria for multiple levels of granularity. Finally, since no cell-type specific information is hard-coded in the simulator, models can easily be adapted to other organismal species. We expect that BiPSim should open new perspectives for the genome-wide simulation of stochastic phenomena in biology.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel J. Panyard ◽  
Kyeong Mo Kim ◽  
Burcu F. Darst ◽  
Yuetiva K. Deming ◽  
Xiaoyuan Zhong ◽  
...  

AbstractThe study of metabolomics and disease has enabled the discovery of new risk factors, diagnostic markers, and drug targets. For neurological and psychiatric phenotypes, the cerebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult to study on a large scale due to the relative complexity of the procedure needed to collect the fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic and metabolomic data to impute metabolites into large samples with genome-wide association summary statistics. We conduct a metabolome-wide, genome-wide association analysis with 338 CSF metabolites, identifying 16 genotype-metabolite associations (metabolite quantitative trait loci, or mQTLs). We then build prediction models for all available CSF metabolites and test for associations with 27 neurological and psychiatric phenotypes, identifying 19 significant CSF metabolite-phenotype associations. Our results demonstrate the feasibility of MWAS to study omic data in scarce sample types.


Sign in / Sign up

Export Citation Format

Share Document