scholarly journals Generalized Structured Component Analysis in candidate gene association studies: applications and limitations

2020 ◽  
Vol 4 ◽  
pp. 142
Author(s):  
Paul A. Thompson ◽  
Dorothy V. M. Bishop ◽  
Else Eising ◽  
Simon E. Fisher ◽  
Dianne F. Newbury

Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing. Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9. Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects. Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis.

2019 ◽  
Vol 4 ◽  
pp. 142 ◽  
Author(s):  
Paul A. Thompson ◽  
Dorothy V. M. Bishop ◽  
Else Eising ◽  
Simon E. Fisher ◽  
Dianne F. Newbury

Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing. Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9. Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects. Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis.


2019 ◽  
Vol 105 (4) ◽  
pp. e1152-e1161
Author(s):  
Meng Li ◽  
Shi Yao ◽  
Yuan-Yuan Duan ◽  
Yu-Jie Zhang ◽  
Yan Guo ◽  
...  

Abstract Purpose Genome-wide association studies (GWASs) have identified hundreds of single nucleotide polymorphisms (SNPs) associated with osteoporosis. Most of these SNPs are noncoding variants and could be mapped to enhancers. Transcription factors (TFs) play important roles in gene regulation via enhancers harboring these SNPs; thus, we aimed to identify common regulatory TFs binding to enhancers associated with osteoporosis. Methods We first annotated all the osteoporosis-related SNPs identified by GWASs to enhancers and conducted TF enrichment analyses to identify common TFs binding to osteoporosis-associated enhancers. We further conducted genetic association analyses between the identified TFs and bone mineral density (BMD) in a Han Chinese population. Results After functional annotation, a total of 5081 osteoporosis-related SNPs were mapped to enhancers. TF enrichment analyses identified 2 significant TFs after multiple testing adjustments, which are EZH2 (Padj = .028) and NRSF (Padj = .038). We also found 1 SNP, rs111851041, in EZH2 was significantly associated with BMD both at the hip and spine after multiple testing adjustments (hip BMD: P = 4.32 × 10–4; spine BMD: P = 2.72 × 10–3). The expression of EZH2 decreased significantly from 12 to 48 hours of osteogenic differentiation. And functional validation showed that EZH2 was associated with osteoporosis-related phenotypes in knockout mice. Conclusions By conducting TF enrichment analyses, we identified EZH2 as a common TF binding to osteoporosis-associated enhancers, and EZH2 was also associated with BMD in a Chinese population. EZH2 is functionally related to bone phenotypes. The identified gene could provide new insight into osteoporosis pathophysiology and highlight opportunities for future clinical and pharmacological research on osteoporosis.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Lijun Wu ◽  
Liwang Gao ◽  
Xiaoyuan Zhao ◽  
Meixian Zhang ◽  
Jianxin Wu ◽  
...  

Purpose. Genome-wide association studies have found two obesity-related single-nucleotide polymorphisms (SNPs), rs17782313 near the melanocortin-4 receptor (MC4R) gene and rs6265 near the brain-derived neurotrophic factor (BDNF) gene, but the associations of both SNPs with other obesity-related traits are not fully described, especially in children. The aim of the present study is to investigate the associations between the SNPs and adiponectin that has a regulatory role in glucose and lipid metabolism. Methods. We examined the associations of the SNPs with adiponectin in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study. A total of 3503 children participated in the study. Results. The SNP rs6265 was significantly associated with adiponectin under an additive model (P=0.02 and 0.024, resp.) after adjustment for age, gender, and BMI or obesity statuses. The SNP rs17782313 was significantly associated with low adiponectin under a recessive model. No statistical significance was found between the two SNPs and low adiponectin after correction for multiple testing. Conclusion. We demonstrate for the first time that the SNP rs17782313 near MC4R and the SNP rs6265 near BDNF are associated with adiponectin in Chinese children. These novel findings provide important evidence that adiponectin possibly mediates MC4R and BDNF involved in obesity.


2020 ◽  
Vol 117 (26) ◽  
pp. 15028-15035 ◽  
Author(s):  
Ronald Yurko ◽  
Max G’Sell ◽  
Kathryn Roeder ◽  
Bernie Devlin

To correct for a large number of hypothesis tests, most researchers rely on simple multiple testing corrections. Yet, new methodologies of selective inference could potentially improve power while retaining statistical guarantees, especially those that enable exploration of test statistics using auxiliary information (covariates) to weight hypothesis tests for association. We explore one such method, adaptiveP-value thresholding (AdaPT), in the framework of genome-wide association studies (GWAS) and gene expression/coexpression studies, with particular emphasis on schizophrenia (SCZ). Selected SCZ GWAS associationPvalues play the role of the primary data for AdaPT; single-nucleotide polymorphisms (SNPs) are selected because they are gene expression quantitative trait loci (eQTLs). This natural pairing of SNPs and genes allow us to map the following covariate values to these pairs: GWAS statistics from genetically correlated bipolar disorder, the effect size of SNP genotypes on gene expression, and gene–gene coexpression, captured by subnetwork (module) membership. In all, 24 covariates per SNP/gene pair were included in the AdaPT analysis using flexible gradient boosted trees. We demonstrate a substantial increase in power to detect SCZ associations using gene expression information from the developing human prefrontal cortex. We interpret these results in light of recent theories about the polygenic nature of SCZ. Importantly, our entire process for identifying enrichment and creating features with independent complementary data sources can be implemented in many different high-throughput settings to ultimately improve power.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Abiskar Gyawali ◽  
Vivek Shrestha ◽  
Katherine E. Guill ◽  
Sherry Flint-Garcia ◽  
Timothy M. Beissinger

Abstract Background Genome wide association studies (GWAS) are a powerful tool for identifying quantitative trait loci (QTL) and causal single nucleotide polymorphisms (SNPs)/genes associated with various important traits in crop species. Typically, GWAS in crops are performed using a panel of inbred lines, where multiple replicates of the same inbred are measured and the average phenotype is taken as the response variable. Here we describe and evaluate single plant GWAS (sp-GWAS) for performing a GWAS on individual plants, which does not require an association panel of inbreds. Instead sp-GWAS relies on the phenotypes and genotypes from individual plants sampled from a randomly mating population. Importantly, we demonstrate how sp-GWAS can be efficiently combined with a bulk segregant analysis (BSA) experiment to rapidly corroborate evidence for significant SNPs. Results In this study we used the Shoepeg maize landrace, collected as an open pollinating variety from a farm in Southern Missouri in the 1960’s, to evaluate whether sp-GWAS coupled with BSA can efficiently and powerfully used to detect significant association of SNPs for plant height (PH). Plant were grown in 8 locations across two years and in total 768 individuals were genotyped and phenotyped for sp-GWAS. A total of 306 k polymorphic markers in 768 individuals evaluated via association analysis detected 25 significant SNPs (P ≤ 0.00001) for PH. The results from our single-plant GWAS were further validated by bulk segregant analysis (BSA) for PH. BSA sequencing was performed on the same population by selecting tall and short plants as separate bulks. This approach identified 37 genomic regions for plant height. Of the 25 significant SNPs from GWAS, the three most significant SNPs co-localize with regions identified by BSA. Conclusion Overall, this study demonstrates that sp-GWAS coupled with BSA can be a useful tool for detecting significant SNPs and identifying candidate genes. This result is particularly useful for species/populations where association panels are not readily available.


2020 ◽  
Vol 8 (4) ◽  
pp. 189-202
Author(s):  
Gyeongcheol Cho ◽  
Heungsun Hwang ◽  
Marko Sarstedt ◽  
Christian M. Ringle

AbstractGeneralized structured component analysis (GSCA) is a technically well-established approach to component-based structural equation modeling that allows for specifying and examining the relationships between observed variables and components thereof. GSCA provides overall fit indexes for model evaluation, including the goodness-of-fit index (GFI) and the standardized root mean square residual (SRMR). While these indexes have a solid standing in factor-based structural equation modeling, nothing is known about their performance in GSCA. Addressing this limitation, we present a simulation study’s results, which confirm that both GFI and SRMR indexes distinguish effectively between correct and misspecified models. Based on our findings, we propose rules-of-thumb cutoff criteria for each index in different sample sizes, which researchers could use to assess model fit in practice.


2015 ◽  
Vol 97 ◽  
Author(s):  
WEIJUN MA ◽  
CHAOFENG YUAN ◽  
HAIDONG LIU ◽  
WEI ZHENG ◽  
YING ZHOU

SummaryWith a large number of quantitative trait loci being identified in genome-wide association studies, researchers have become more interested in detecting interactions among genes or single nucleotide polymorphisms (SNPs). In this research, we carried out a two-stage model selection procedure to detect interacting gene pairs or SNP pairs associated with four important traits of outbred mice, including glucose, high-density lipoprotein cholesterol, diastolic blood pressure and triglyceride. In the first stage, a variance heterogeneity test was used to screen for candidate SNPs. In the second stage, the Lasso method and single pair analysis were used to select two-way interactions. Moreover, the shared Gene Ontology information about the selected interacting gene pairs was considered to study the interactions auxiliarily. Based on this method, we not only replicated the identification of important SNPs associated with each trait of outbred mice, but also found some SNP pairs and gene pairs with significant interaction effects on each trait. Simulation studies were also conducted to evaluate the performance of the two-stage method in different situations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe S. Kaibara ◽  
Tânia K. de Araujo ◽  
Patricia A. O. R. A. Araujo ◽  
Marina K. M. Alvim ◽  
Clarissa L. Yasuda ◽  
...  

Genetic generalized epilepsies (GGEs) include well-established epilepsy syndromes with generalized onset seizures: childhood absence epilepsy, juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), myoclonic absence epilepsy, epilepsy with eyelid myoclonia (Jeavons syndrome), generalized tonic–clonic seizures, and generalized tonic–clonic seizures alone. Genome-wide association studies (GWASs) and exome sequencing have identified 48 single-nucleotide polymorphisms (SNPs) associated with GGE. However, these studies were mainly based on non-admixed, European, and Asian populations. Thus, it remains unclear whether these results apply to patients of other origins. This study aims to evaluate whether these previous results could be replicated in a cohort of admixed Brazilian patients with GGE. We obtained SNP-array data from 87 patients with GGE, compared with 340 controls from the BIPMed public dataset. We could directly access genotypes of 17 candidate SNPs, available in the SNP array, and the remaining 31 SNPs were imputed using the BEAGLE v5.1 software. We performed an association test by logistic regression analysis, including the first five principal components as covariates. Furthermore, to expand the analysis of the candidate regions, we also interrogated 14,047 SNPs that flank the candidate SNPs (1 Mb). The statistical power was evaluated in terms of odds ratio and minor allele frequency (MAF) by the genpwr package. Differences in SNP frequencies between Brazilian and Europeans, sub-Saharan African, and Native Americans were evaluated by a two-proportion Z-test. We identified nine flanking SNPs, located on eight candidate regions, which presented association signals that passed the Bonferroni correction (rs12726617; rs9428842; rs1915992; rs1464634; rs6459526; rs2510087; rs9551042; rs9888879; and rs8133217; p-values <3.55e–06). In addition, the two-proportion Z-test indicates that the lack of association of the remaining candidate SNPs could be due to different genomic backgrounds observed in admixed Brazilians. This is the first time that candidate SNPs for GGE are analyzed in an admixed Brazilian population, and we could successfully replicate the association signals in eight candidate regions. In addition, our results provide new insights on how we can account for population structure to improve risk stratification estimation in admixed individuals.


2017 ◽  
Author(s):  
Neda Jahanshad ◽  
Habib Ganjgahi ◽  
Janita Bralten ◽  
Anouk den Braber ◽  
Joshua Faskowitz ◽  
...  

Abstract:Susceptibility genes for psychiatric and neurological disorders - including APOE, BDNF, CLU,CNTNAP2, COMT, DISC1, DTNBP1, ErbB4, HFE, NRG1, NTKR3, and ZNF804A - have been reported to affect white matter (WM) microstructure in the healthy human brain, as assessed through diffusion tensor imaging (DTI). However, effects of single nucleotide polymorphisms (SNPs) in these genes explain only a small fraction of the overall variance and are challenging to detect reliably in single cohort studies. To date, few studies have evaluated the reproducibility of these results. As part of the ENIGMA-DTI consortium, we pooled regional fractional anisotropy (FA) measures for 6,165 subjects (CEU ancestry N=4,458) from 11 cohorts worldwide to evaluate effects of 15 candidate SNPs by examining their associations with WM microstructure. Additive association tests were conducted for each SNP. We used several meta-analytic and mega-analytic designs, and we evaluated regions of interest at multiple granularity levels. The ENIGMA-DTI protocol was able to detect single-cohort findings as originally reported. Even so, in this very large sample, no significant associations remained after multiple-testing correction for the 15 SNPs investigated. Suggestive associations (1.3×10-4 < p < 0.05, uncorrected) were found for BDNF, COMT, and ZNF804A in specific tracts. Meta-and mega-analyses revealed similar findings. Regardless of the approach, the previously reported candidate SNPs did not show significant associations with WM microstructure in this largest genetic study of DTI to date; the negative findings are likely not due to insufficient power. Genome-wide studies, involving large-scale meta-analyses, may help to discover SNPs robustly influencing WM microstructure.


Sign in / Sign up

Export Citation Format

Share Document