scholarly journals Evaluation of the relationship between morphological and agronomic traits with grain yield in spring wheat cultivars under drought stress

2014 ◽  
Vol 5 (3) ◽  
pp. 88-93
2016 ◽  
Vol 8 (18) ◽  
pp. 64-77 ◽  
Author(s):  
Mohammad Reza Naghavi ◽  
Mohammad Moghaddam ◽  
Mahmoud Toorchi ◽  
Mohammad Reza Shakiba

2015 ◽  
Vol 7 (3) ◽  
pp. 349-354
Author(s):  
Mohammad Reza NAGHAVI ◽  
Mahmoud TOORCHI ◽  
Mohammad MOGHADDAM ◽  
Mohammad Reza SHAKIBA

In order to study of diversity and classify agro-morphological characters under normal irrigation and drought stress in spring wheat cultivars, 20 cultivars were evaluated in the research farm of University of Tabriz, Iran. According to the results, significant correlation was found between grain yield and number of spikes per plant, number of tiller per plant, number of fertile tillers, spike length, root length, root number, root volume, root diameter and root dry weight under both conditions. Moreover, 1,000 grain weight and plant dry weight had significant positive correlation with grain yield under drought stress. Factor analysis detected four and two factors which explained 96.77% and 90.59% of the total variation in normal irrigation and drought stress conditions, respectively. In drought stress condition the first factor justified 69.52% of total variation and was identified as yield factor. The second factor explained 21.07% of total variation and represented the biomass and plant height factor. Cluster analysis was based on the four and two factors obtained. According to the amount of factors for clusters obtained under drought stress, ‘Kavir’, ‘Niknejhad’, ‘Moghan 3’, ‘Darya’ and ‘Marvdasht’ were identified as the most drought tolerant cultivars. Other cluster was comprised of ‘Bahar’, ‘Pishtaz’, ‘Bam’, ‘Sepahan’, ‘Sistan’, ‘Pars’ and ‘Sivand’ and was named as the most sensitive under drought stress. Tolerant cultivars identified within the study can be used for direct culture or as genitors in breeding programs.


2018 ◽  
Vol 10 (25) ◽  
pp. 138-151
Author(s):  
Marouf Khalili ◽  
Mohammad Reza Naghavi Mohammad Reza Naghavi ◽  

Genetika ◽  
2017 ◽  
Vol 49 (3) ◽  
pp. 891-910 ◽  
Author(s):  
Josip Kovacevic ◽  
Maja Mazur ◽  
Georg Drezner ◽  
Alojzije Lalic ◽  
Aleksandra Sudaric ◽  
...  

In an effort to find breeding methods for improving drought stress tolerance and grain yield, twelve photosynthetic efficiency parameters have been measured on ten cultivars of winter wheat (Triticum aestivum L.), along with water use (WU), water use efficiency (WUE) and agronomic traits of grain yield (GYP), biomass weight (BWP), harvest index (HI), yield stability index (YSI) and stress tolerance index (STI) in the vegetative pot trial with control (B1) and drought stress (B2) treatments. Drought stress induced in three different stages of development has caused decrease in water use efficiency based on biomass (WUEb) (B1: 2.94 g L-1; B2: 2.71 g L-1) and grain yield (WUEg) (B1: 1.03 g L-1; B2: 0.89 g L-1), as well as GYP and BWP. Dissipation energy flux per excited cross section (DI0/CS0) observed in the drought stress treatment in the tillering stage of growth gave significant negative correlation coefficient (P?0.05) with agronomic traits of tested wheat cultivars (GYP:-0.75; WUEg and STI: -0.74; YSI: -0.67). Performance index (PIABS) measured in the drought stress conditions in the flag leaf stage was in significant positive correlation with GYP and WUEg (r=0.64). Lower values of absorption flux per excited cross section (ABS/CS0), electron transport per excited CS (ET0/CS0) and dissipation energy flux per excited CS (DI0/CS0) and higher values of PIABS, measured on wheat genotypes (cultivars) in the drought stress conditions of pot trial, could indicate higher tolerance to drought stress conditions. Results of the studied photosynthetic efficiency parameters of wheat cultivars were also the good predictor for important agronomic traits, especially, when they were detected in the early stage of growth.


Crop Science ◽  
1996 ◽  
Vol 36 (4) ◽  
pp. 982-986 ◽  
Author(s):  
M. A. Moustafa ◽  
L. Boersma ◽  
W. E. Kronstad

2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.


1985 ◽  
Vol 25 (4) ◽  
pp. 922 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
RB Hinkley ◽  
JA Fisher

Twelve spring wheat cultivars were tested in southern New South Wales for their tolerances to the recommended rates and three times the recommended rates of trifluralin, pendimethalin, tri-allate and chlorsulfuron. Recommended rates of these herbicides did not affect the emergence or grain yield of any cultivar. However, differences between cultivars in their tolerances to trifluralin, pendimethalin and chlorsulfuron at three times the recommended rate were identified. The extent of the reduction in emergence and/or grain yield varied with herbicide and season, and there was also a herbicidexseason interaction. Durati, Songlen and Tincurrin were the most susceptible cultivars to trifluralin, and Teal was the most tolerant. Yield losses from trifluralin were more severe in 1979 than in 1980 or 1981. The differential between cultivars treated with pendimethalin was smaller and more variable; Tincurrin was the only cultivar with a yield reduction in more than one season. Durati, Songlen and Shortim were the only cultivars affected by chlorsulfuron. A reduction in crop emergence of a cultivar treated with trifluralin or pendimethalin did not correlate consistently with any grain yield loss, and reductions in emergence were always greater than yield loss.


2015 ◽  
Vol 95 (4) ◽  
pp. 615-627 ◽  
Author(s):  
Hiroshi Kubota ◽  
Sylvie A. Quideau ◽  
Pierre J. Hucl ◽  
Dean M. Spaner

Kubota, H., Quideau, S. A., Hucl, P. J. and Spaner, D. M. 2015. The effect of weeds on soil arbuscular mycorrhizal fungi and agronomic traits in spring wheat (Triticum aestivum L.) under organic management in Canada. Can. J. Plant Sci. 95: 615–627. Understanding the influence of weeds in agroecosystems may aid in developing efficient and sustainable organic wheat production systems. We examined the effect of weeds on soil microbial communities and the performance of spring wheat (Triticum aestivum L.) under organic management in Edmonton, AB, Canada. We grew 13 Canadian spring wheat cultivars in organically managed hand-weeded less-weedy and weedy treatments in 2010 and 2011. The less-weedy treatment exhibited greater grain yield and tillers per square meter, while kernel weight, test weight, days to maturity, plant height, grain P and protein content were not altered by weed treatment. Canada Western Red Spring (CWRS) wheat cultivars CDC Go and CDC Kernen were the most yield-stable because they minimized fertile tiller reduction in response to weed pressure (10 and 13% reduction, respectively, compared with the average reduction of 20%). Other cultivars exhibited yield stability through increased kernel weight. The contribution of arbuscular mycorrhizal fungi (AMF) to the total phospholipid fatty acid increased in both treatments; however, the rate of this increase was greater in the weedy treatment than the less-weedy treatment (from 2.9 to 3.9%, from 2.8 to 3.1%, respectively). Weed dry biomass was positively correlated with AMF% in the less-weedy treatment only. Organic systems tend to be weedier than conventional systems. We found that weeds are important determinants of AMF proliferation in soil. In addition, choosing wheat cultivars that maintain important yield components under severe weed stress is one strategy to maximize yields in organic systems.


Sign in / Sign up

Export Citation Format

Share Document