Design of Massive Multiuser MIMO System to Mitigate Inter Antenna Interference and Multiuser Interference in 5G Wireless Networks

2020 ◽  
pp. 693-701 ◽  
Author(s):  
Naga Raju Challa ◽  
◽  
Kalapraveen Bagadi

Massive Multi-user Multiple Input Multiple Output (MU‒MIMO) system is aimed to improve throughput and spectral efficiency in 5G communication networks. Inter-antenna Interference (IAI) and Multi-user Interference (MUI) are two major factors that influence the performance of MU–MIMO system. IAI arises due to closely spaced multiple antennas at each User Terminal (UT), whereas MUI is generated when one UT comes in the vicinity of another UT of the same cellular network. IAI can be mitigated by the use of a pre-coding scheme such as Singular Value Decomposition (SVD) and MUI can be cancelled through efficient Multi-user Detection (MUD) schemes. The highly complex and optimal Maximum Likelihood (ML) detector involves a large number of computations, especially when in massive structures. Therefore, the local search-based algorithm such as Likelihood Ascent Search (LAS) has been found to be a better alternative for mitigation of MUI, as it results in near optimal performance using lesser number of matrix computations. Most of the literature have been aimed at mitigating either IAI or MUI, whereas the proposed work presents SVD pre-coding and LAS MUD to mitigate both IAI and MUI. Simulation results indicate that the proposed scheme can attain near-optimal bit error rate (BER) performance with fewer computations.

2011 ◽  
Vol 130-134 ◽  
pp. 3169-3172
Author(s):  
Yan Wen Wang ◽  
Zhi Wei Yin

In R9 version of LTE system, the double multi-user beamforming is proposed. To suppress inter-user interference of multi-user multiple input multiple output (MU-MIMO) system, a new algorithm is presented in this paper: on condition that current user eliminates the interference to other users, it designs its own transmit beamforming vector; if all users take such measures, the interference that each user suffers from others will be reduced to a minimum, which improves the performance of the system. Simulation shows that, as the number of user increases, the algorithm used in this paper can reduce the bit error rate (BER) of the system more obviously than the traditional signal-to-leakage-and-noise ratio (SLNR) algorithm.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3540 ◽  
Author(s):  
Yurong Wang ◽  
Aijun Liu ◽  
Kui Xu ◽  
Xiaochen Xia

Energy supply and information backhaul are critical problems for wireless sensor networks deployed in remote places with poor infrastructure. To deal with these problems, this paper proposes an airborne massive multiple-input multiple-output (MIMO) system for wireless energy transfer (WET) and information transmission. An air platform (AP) equipped with a two-dimensional rectangular antenna array is employed to broadcast energy and provide wireless access for ground sensors. By exploiting the statistical property of air-terrestrial MIMO channels, the energy and information beamformers are jointly designed to maximize the average received signal-to-interference-plus-noise ratio (SINR), which gives rise to a statistical max-SINR beamforming scheme. The scheme does not rely on the instantaneous channel state information, but still requires large numbers of RF chains at AP. To deal with this problem, a heuristic strongest-path energy and information beamforming scheme is proposed, which can be implemented in the analog-domain with low computational and hardware complexity. The analysis of the relation between the two schemes reveals that, with proper sensor scheduling, the strongest-path beamforming is equivalent to the statistical max-SINR beamforming when the number of AP antennas tends to infinity. Using the asymptotic approximation of average received SINR at AP, the system parameters, including transmit power, number of active antennas of AP and duration of WET phase, are optimized jointly to maximize the system energy efficiency. The simulation results demonstrate that the proposed schemes achieve a good tradeoff between system performance and complexity.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


2013 ◽  
Vol 2013 ◽  
pp. 1-30 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This review paper reveals the broadband potential of overhead and underground low-voltage (LV) and medium-voltage (MV) broadband over power lines (BPL) networks associated with multiple-input multiple-output (MIMO) technology. The contribution of this review paper is fourfold. First, the unified value decomposition (UVD) modal analysis is introduced. UVD modal analysis is a new technique that unifies eigenvalue decomposition (EVD) and singular value decomposition (SVD) modal analyses achieving the common handling of traditional SISO/BPL and upcoming MIMO/BPL systems. The validity of UVD modal analysis is examined by comparing its simulation results with those of other exact analytical models. Second, based on the proposed UVD modal analysis, the MIMO channels of overhead and underground LV and MV BPL networks (distribution BPL networks) are investigated with regard to their inherent characteristics. Towards that direction, an extended collection of well-validated metrics from the communications literature, such as channel attenuation, average channel gain (ACG), root-mean-square delay spread (RMS-DS), coherence bandwidth (CB), cumulative capacity, capacity complementary cumulative distribution function (CCDF), and capacity gain (GC), is first applied in overhead and underground MIMO/LV and MIMO/MV BPL channels and systems. It is found that the results of the aforementioned metrics portfolio depend drastically on the frequency, the power grid type (either overhead or underground, either LV or MV), the MIMO scheme configuration properties, the MTL configuration, the physical properties of the cables used, the end-to-end distance, and the number, the electrical length, and the terminations of the branches encountered along the end-to-end BPL signal propagation. Third, three interesting findings concerning the statistical properties of MIMO channels of distribution BPL networks are demonstrated, namely, (i) the ACG, RMS-DS, and cumulative capacity lognormal distributions; (ii) the correlation between RMS-DS and ACG; and (iii) the correlation between RMS-DS and CB. By fitting the numerical results, unified regression distributions appropriate for MIMO/BPL channels and systems are proposed. These three fundamental properties can play significant role in the evaluation of recently proposed statistical channel models for various BPL systems. Fourth, the potential of transformation of overhead and underground LV/BPL and MV/BPL distribution grids to an alternative solution to fiber-to-the-building (FTTB) technology is first revealed. By examining the capacity characteristics of various MIMO scheme configurations and by comparing these capacity results against SISO ones, a new promising urban backbone network seems to be born in a smart grid (SG) environment.


2020 ◽  
Vol 10 (19) ◽  
pp. 6809
Author(s):  
Hyun-Sun Hwang ◽  
Jae-Hyun Ro ◽  
Young-Hwan You ◽  
Duckdong Hwang ◽  
Hyoung-Kyu Song

A number of requirements for 5G mobile communication are satisfied by adopting multi-user multiple input multiple output (MU-MIMO) systems. The inter user interference (IUI) which is an inevitable problem in MU-MIMO systems becomes controllable when the precoding scheme is used. The proposed scheme, which is one of the precoding schemes, is built on regularized block diagonalization (RBD) precoding and utilizes the partial nulling concept, which is to leave part of the IUI at the same time. Diversity gain is obtained by leaving IUI, which is made by choosing the row vectors of the channel matrix that are not nullified. Since the criterion for choosing the row vectors of the channel is the power of the channel, the number of selected row vectors of the channel for each device can be unfair. The proposed scheme achieves performance enhancement by obtaining diversity gain. Therefore, the bit error rate (BER) performance is better and the computational complexity is lower than RBD when the same data rate is achieved. When the number of reduced data streams is not enough for most devices to achieve diversity gain, the proposed scheme has better performance compared to generalized block diagonalization (GBD). The low complexity at the receiver is achieved compared to GBD by using the simple way to remove IUI.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan Ren ◽  
Jiancheng Fang

This paper develops a complex-coefficient frequency domain stability analysis method for a class of cross-coupled two-dimensional antisymmetrical systems, which can greatly simplify the stability analysis of the multiple-input multiple-output (MIMO) system. Through variable reconstruction, the multiple-input multiple-output (MIMO) system is converted into a single-input single-output (SISO) system with complex coefficients. The pole locations law of the closed-loop system after the variable reconstruction has been revealed, and the controllability as well as observability of the controlled plants before and after the variable reconstruction has been studied too, and then the classical Nyquist stability criterion is extended to the complex-coefficient frequency domain. Combined with the rigid magnetically suspended rotor (MSR) system with heavy gyroscopic effects, corresponding stability criterion has been further developed. Compared with the existing methods, the developed criterion for the rigid MSR system not only accurately predicts the absolute stability of the different whirling modes, but also directly demonstrates their relative stability, which greatly simplifies the analysis, design, and debugging of the control system.


2013 ◽  
Vol 62 (4) ◽  
pp. 1646-1654 ◽  
Author(s):  
Haiquan Wang ◽  
Yabo Li ◽  
Xiang-Gen Xia ◽  
Shunlan Liu

In this paper, a multiple-input-multiple-output (MIMO) system with finite-bit feedback first proposed by Love-Heath is considered, where a transmitted signal consists of a precode followed by an orthogonal space-time block code (OSTBC), such as Alamouti code. A new design criterion and a corresponding design method of precoders are proposed. Simulations show that the precoders obtained by our proposed criterion and method perform better than the existing ones. Furthermore, since our proposed precoders have a layered structure, their designs can be implemented in the simplest Grassmannian manifold. Moreover, a fast encoding algorithm can be applied, which can greatly reduce the complexity of codeword selection. In this paper, we also propose non-unitary precoders and their design criterion and method based on the performance analysis and the special property of an OSTBC. Interestingly, non-unitary precoders can significantly improve performance over unitary precoders.


Sign in / Sign up

Export Citation Format

Share Document