scholarly journals Performance Analysis of 5G Stand Alone Inter-band Carrier Aggregation

2021 ◽  
pp. 492-499
Author(s):  
Alfin Hikmaturokhman ◽  
◽  
Levina Anora, Solichah Larasati ◽  
Ari Sukarno ◽  
Rizky Syafrullah ◽  
...  

Today, high data rate is the prior requirement to support services and applications. It is definitely a challenge for the 5G New Radio (NR) in providing high data rates, in order to support use cases, especially enhanced Mobile Broadband (eMBB). The objective of this research is to design a 5G network which has greater data rates employing carrier aggregation techniques. Carrier Aggregation (CA) is a way which is able to improve data rates by aggregate component carriers, hence, it can make a wider bandwidth. There are three modes of CA scenario that can be used: intra-band contiguous CA, intra-band non-contiguous CA, and inter-band noncontiguous CA. In this research, the 5G network planning with carrier aggregation on inter-band employing bandwidth 40 MHz at frequency 2300 MHz and bandwidth 100 MHz at frequency 3500 MHz was simulated in Mentum Planet software. The simulation implemented at Marunda Center Industrial Area in Bekasi used downlink outdoor-to-indoor (O2I) with Line of Sight (LOS) scenario. The parameters analyzed in this research employed three main parameters: SS-RSRP, SS-SINR and data rate, which resulted CA SS-RSRP increased by 0.14%, SSSINR increased by 4.48%, and peak data rate increased up to 1412.26 Mbps from 312.872 Mbps

2008 ◽  
Vol 18 (02) ◽  
pp. 401-406 ◽  
Author(s):  
ROGER STETTNER ◽  
HOWARD BAILEY ◽  
STEVEN SILVERMAN

3-D flash ladar, herein defined as obtaining an entire frame of 3-D ladar data with one laser pulse, is an emerging technology with a number of advantages over conventional point scanner systems. Probably the most obvious advantage is the higher data rates possible and the potential for much higher data rates with increases in the associated 3-D focal planes array (FPA) format. High data rate means that topographical mapping, for example, can be obtained more rapidly decreasing the amount of flight time required. This paper investigates the clear but perhaps not-so-intuitive use of the high data rate: time dependent 3-D movies can be acquired at the repetition frequency of the associated laser. Data is taken using 3-D flash ladar cameras fabricated by Advanced Scientific Concepts, Inc. The paper concludes that there are a number of advantages and unique applications of the time dynamic 3-D flash ladar, including 3-D collision avoidance and object tracking.


2013 ◽  
Vol 427-429 ◽  
pp. 2864-2869
Author(s):  
Zhi Ren ◽  
Ya Nan Cao ◽  
Shuang Peng ◽  
Hong Jiang Lei

The terahertz wave is a kind of electromagnetic waves which locates between millimeter waves and infrared lightwaves, and the frequency range is 0.14THz~10THz. Terahertz is used as a carrier wave to communicate with each other because it has large bandwidth which can support Gbps wireless data rates. Therefore, terahertz communication technologies become research hot spots in recent years. However, its still rare in MAC protocol of terahertz ultra-high data-rate wireless networks at present. In order to realize wireless access of ultra-high data-rate under the condition of terahertz carrier frequency, a novel MAC protocol is proposed in this paper. The improved MAC protocol which makes the maximum data rates reach up to 10Gbps or higher is designed by new MAC control mechanisms, new time-slots allocation schemes and new superframe structure. Theoretical analysis and simulation results show that the new proposed MAC protocol of terahertz ultra-high data-rate wireless networks can operation normally, and the maximum data rate can reach up to 19.2Gbps. This maximum data rate is 2 times higher than 5.78 Gbps which IEEE 802.15.3c can achieve.


Frequenz ◽  
2012 ◽  
Vol 66 (5-6) ◽  
Author(s):  
Monique Düngen

AbstractxDSL systems have to be able to support an always increasing amount of high-rate applications. To make the applications run stably, service providers need to be capable of guaranteeing these high data rates to their customers at a limited amount of available computational complexity usable for crosstalk cancellation.In order to be able to support high data rate targets with a low amount of computational complexity, partial crosstalk cancellation was combined with spectrum management techniques. A selection procedure was found, which jointly chooses the canceled crosstalkers and the transmit powers for each user on each tone by interlacing Iterative Water Filling (IWF) and a newly developed successive crosstalk selection algorithm for partial crosstalk cancellation, which takes into account the data rate requirements of the users. It distributes the available computational complexity in an intelligent way, so that data rate requirements are fulfilled. With the joint procedure savings in computational complexity are achieved.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1008-1011

In Early days, communications systems used amplitude and frequency modulation schemes in which bandwidth constraint is one of the major challenge to accommodate more data rates. As the data rate requirement increased drastically till date, The applications demands more data rates for communication using less bandwidth is considered as an efficient communication system. For achieving communication with high data rates using less bandwidth, technology migrated to digital modulation schemes. In this phase new modulation techniques like ASK, FSK, PSK were realised. ASK and FSK modulation schemes bandwidth efficiency is less as compared to PSK schemes. For best utilisation of bandwidth efficiency and less inherent noise levels, PSK schemes are used, which is suitable for high data rate applications. In this paper QPSK modulation and demodulation technique is selected for realising the variable data rate in the range of 1.2MBPS as the best bandwidth with efficient reconfigurable architecture designed for software defined radio receiver.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1318 ◽  
Author(s):  
Ganame ◽  
Yingzhuang ◽  
Ghazzai ◽  
Kamissoko

It can be predicted that the infrastructure of the existing wireless networks will not fill the requirement of the fifth generation (5G) wireless network due to the high data rates and a large number of expected traffic. Thus, a novel deployment method is crucial to satisfy 5G features. Meta-heuristic is expected to be a promising method for the complex deployment optimization problem of the 5G network. This work presents an implementation of a meta-heuristic algorithm based on swarm intelligence, to minimize the number of base stations (BSs) and optimize their placements in millimeter wave (mmWave) frequencies (e.g., 28 GHz and 38 GHz) in the context of the 5G network while satisfying user data rates requirement. Then, an iterative method is applied to remove redundant BSs. We formulate an optimization problem that takes into account multiple 5G network deployment scenarios. Further, a comparative study is conducted with the well-known simulated annealing (SA) using Monte Carlo simulations to assess the performance of the developed model. In our simulation results, we divide the region of interest into two subareas with different user distributions for different network scenarios while considering the intercell interference. The results demonstrate that the proposed approach has better network coverage with low percentage users in outage. In addition, the developed approach has less computational times to reach the desired target network quality of service (QoS).


2012 ◽  
Vol 457-458 ◽  
pp. 710-715 ◽  
Author(s):  
Yu Xiang Zhang ◽  
Deng Kun Xiao ◽  
Xiao Jun Jing ◽  
Song Lin Sun

In order to achieve up to 1 Gb/s peak data rate in future International Telecommunications Advanced mobile systems, carrier aggregation technology is introduced by the 3GPP to support very-high-data-rate transmissions over wide frequency bandwidths (e.g., up to 100 MHz) in its new LTE-Advanced standards. In this paper, two carriers are considered, namely primary component carrier (PCell) and secondary component carrier (SCell). Appropriately loosening SCell measurement period is able to save UE power consumption without apparent effect on the system performance. This paper analyzes system mobility performances under various SCell measurement periods. Furthermore, it gives the least length a SCell measurement period could be relaxed to while still retaining the system performance in scenario 2.


2005 ◽  
Vol 2 ◽  
pp. 155-162
Author(s):  
A. Dekorsy ◽  
M. Schacht ◽  
S. Brueck ◽  
G. Fischer

Abstract. An expanded effort is under the way to support the evolution of UMTS (Universal Mobile Telecommunication System). Apart from delivering high data rates, future UMTS releases will also require to provide high network performance in terms of system capacity, low radiated power, and high coverage. Well promising performance-enhancing technologies are smart antennas as well as multiuser detection. Although these new radio technologies have recently been subject to intense research, main UMTS network integration aspects with their specific constraints have been neglected in many cases. Especially the interaction with UMTS radio resource control being required to meet Quality of Service (QoS) constraints has to be included to assess the applicability of these technologies for UMTS. In this paper, we study the interaction of beamforming concepts as well as multiuser detection with load and power control. We also work out UMTS specific constraints like signal-to-interference-plus-noise ratio (SINR) operating points, pilot power pollution or channel estimation, all strongly limiting network performance. Results are shown for capacity gains and power reduction for all beamforming concepts of interest as well as linear multiuser detection schemes. The results show that fix as well as user-specific beamforming significantly improves network performance gains in downlink. In uplink multiuser detection indicates fairly modest system capacity gains, while it reduces tremendously mobile station power.


2021 ◽  
Author(s):  
Amna Javed Tiwana ◽  
Muhammad Zeeshan ◽  
Tabinda Ashraf ◽  
Muhammad Umar Farooq ◽  
Kashif Shahzad ◽  
...  

Abstract The fast evolution in wireless communication standards and enhancement in cellular applications has created an exponential rise in the data rate requirement over the past few decades. The next generation wireless standards, therefore, need not only to provide ultra high data rates with minimum latency, but also to support diverse quality-of-service (QoS) requirements. Filterbank multicarrier (FBMC) scheme provides quite a few advantages over the conventional orthogonal frequency division multiplexing (OFDM) for future wire- less networks. In order to achieve adaptive throughput and diverse service quality requirements under varying channel conditions, a link adaptation algorithm for FBMC scheme is proposed in this paper. The aim is to provide the dynamic selection of optimum parameters resulting in diverse modes of operation to ensure the desired and/or best available communication service quality. The proposed link adaptation algorithm incorporates the parameters of required data rate, available channel condition and QoS demand, and dynamically allocates the appropriate FBMC transmission parameters. The proposed scheme has been evaluated for AWGN as well as multipath fading SUI channel models. Simulation results indicate that the proposed algorithm successfully achieves the desired service quality subject to the availability of suitable channel conditions and is also superior to the existing algorithms in terms of block error rate and effective throughput.


There are various techniques which have been developed to improvise the modulation technique exploited in the system which were intended to enhance the data rate and bandwidth of the 5G network. Various researchers worked on OFDM modulation technique in order to enhance the efficiency as it is successfully working on 4G networks. Although utilization of OFDM in 5G networks will not provide the expected outcomes due to some flaws. This paper proposed a system that induced FBMC (Filter Bank Multi-Carrier) modulation technique which is capable of delivering higher spectral efficiency than OFDM. Proposed method employed APSK (Amplitude Phase Shift Modulation) for the modulation of sub carriers. The idea of implementing APSK in FBMC is to optimize the peak to average power ratio and also reduces bit error rate. The techniques proposed in the system, aimed to achieve high efficiency in terms of data rate and bandwidth with less power consumption. By using MATLAB all the simulations will be performed to analyze the results of spectral efficiency in terms of BER vs Eb/No (SNR) and power spectral density.


Sign in / Sign up

Export Citation Format

Share Document