scholarly journals Influence of Organic Amendment and Inorganic Sources in relation to Crop Yield of Ragi and Soil Characteristics

2004 ◽  
Vol 3 (1) ◽  
pp. 11-19
Author(s):  
Gopal Dasar ◽  
G. N. Gajanana ◽  
B. Basavaraj

A fields experiment was conducted on a sandy clay loam soil during summer season to characterize the soil crust to alleviate soil crust with organic waste and other amendments to improve the yield. Maize residue treatment recorded significantly higher grain and straw yields, seedling emergence, reduction in the crust strength and increase in the moisture content of the crust was observed due to maize residues incorporation. Soil crust contains higher amount of finer fractions, sesquioxides, iron, dispersion ratio and lower amount of organic matter. The problem of soils crusting is common in agricultural soils under a wide range of climatic conditions. Soil crust is a hard layer formed on the surface due to impact of rain drops and subsequent drying. Though the seeds germinate below the crust, seedlings are not able to exert sufficient upward pressure to pierce through the crust resulting in pre-emergence death of seedlings, crusts are known to adversely affect seedling emergence, early growth of seedling oxygen supply, moisture iniliteration but increase erosion and run off.

2002 ◽  
Vol 138 (2) ◽  
pp. 123-134 ◽  
Author(s):  
P. SMITH ◽  
P. D. FALLOON ◽  
M. KÖRSCHENS ◽  
L. K. SHEVTSOVA ◽  
U. FRANKO ◽  
...  

Since 1997, the EuroSOMNET project, funded by the EU-ENRICH programme, has assembled a metadatabase, and separate experimental databases, of European long-term experiments that investigate changes in soil organic matter. In this paper, we describe the WWW-based metadatabase, which is a product of this project. The database holds detailed records of 110 long-term soil organic matter experiments, giving a wide geographical coverage of Europe, and includes experiments from the European part of the former Soviet Union, many of which have not been available previously. For speed of access, records are stored as hyper-text mark-up language (HTML) files. In this paper, we describe the metadatabase, the experiments for which records are held, the information stored about each experiment, and summarize the main characteristics of these experiments. Details from the metadatabase have already been used to examine regional trends in soil organic matter in Germany and eastern Europe, to construct and calibrate a regional statistical model of humus balance in Russia, to examine the effects of climatic conditions on soil organic matter dynamics, to estimate the potential for carbon sequestration in agricultural soils in Europe, and to test and improve soil organic matter models. The EuroSOMNET metadatabase provides information applicable to a wide range of agricultural and environmental questions and can be accessed freely via the EuroSOMNET home page at URL: http://www.iacr.bbsrc.ac.uk/aen/eusomnet/index.htm.


2019 ◽  
Vol 70 (9) ◽  
pp. 807
Author(s):  
A. Mobli ◽  
S. Mijani ◽  
A. Ghanbari ◽  
M. Rastgoo

Flax-leaf alyssum (Alyssum linifolium Steph. ex. Willd.) is a winter growing annual weed species widely distributed in many semi-arid cropping regions of Iran, especially in the Khorasan Razavi and East Azerbaijan provinces. The germination of two populations (one each from Khorasan Razavi and East Azerbaijan) of this weed was evaluated under different experimental conditions. Seeds of A. linifolium germinated over a wide range of day/night temperature regimes, with the highest germination percentage observed with a regimen of 20°C/10°C. Light was not required for germination for either population, and >70% seeds germinated under all photoperiods tested. Germination was affected by pH levels; seeds germinated over the pH range 4–9 and germination was maximum at pH 7. For the Khorasan Razavi and East Azerbaijan populations, ≥50% of seeds germinated at a water potential of –0.69 and –0.78 MPa and salinity of 12.64 and 11.7 dS m–1 respectively. Maximum seedling emergence occurred when seeds were slightly covered with soil, but emergence decreased with increasing depth of soil cover, with no emergence at depths >3 cm. These results indicate that A. linifolium germinates in a wide range of climatic conditions and could invade into new regions. Burying the seeds through tillage may reduce their emergence.


Author(s):  
О. V. Levakova ◽  
L. М. Eroshenko ◽  
А. N. Eroshenko

The article presents and analyzes data of competitive varietal testing of promising varieties and lines of spring barley for yield and brewing qualities. Field studies were conducted in 2014–2017 on dark gray forest heavy loam soil. Agrochemical parameters are total nitrogen – 0.24%, humus content in a layer of 0-40 cm (according to Tyurin) – 5.19%, hydrolysis nitrogen – 123.5 mg / kg, salt extract pH – 4.92 mg-eq / 100g; labile phosphorus - 34.6 mg / 100g, labile potassium – 20.0 mg / 100g. The forerunner is winter wheat. Meteorological conditions in the years of research differed from each other and from the average long-term value. Barley samples were assessed by the protein content in the grain (GOST 10846-91), extract content (GOST 12130-77), weight 1000 grains (GOST 10842-89). Ecological plasticity was determined by the method proposed by E.D. Nettevich, A.I. Morgunov and M.I. Maksimenko, stability index (Ľ) by A. A. Gryaznov, indicator of stability level (Puss) by E. D. Nettevich and A. I. Morgunov. The main measure for assessing quality indicators is protein content. Many other biochemical and technological features of grain depend on its level. The experimental data convincingly testify to the significant influence of the soil and climatic conditions on the yield and, especially, on the brewing qualities of barley in the conditions of the Central Region of the Nonchernozem Zone. According to the studied traits, new valuable varieties Nadezhny, Sir, Noble and selection lines 141 / 1-09 h 746, 23 / 1-10 h 784, distinguished by high adaptability and resistance to adverse environmental factors, have been identified.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
MINAKSHI SERAWAT ◽  
V K PHOGAT ◽  
ANIL Abdul KAPOOR ◽  
VIJAY KANT SINGH ◽  
ASHA SERAWAT

Soil crust strength influences seedling emergence, penetration and morphology of plant roots, and, consequently, crop yields. A study was carried out to assess the role of different soil properties on crust strength atHisar, Haryana, India. The soil samples from 0-5 and 5-15 cm depths were collected from 21 locations from farmer’s fields, having a wide range of texture.Soil propertieswere evaluated in the laboratory and theirinfluence on the modulus of rupture (MOR), which is the measure of crust strength, was evaluated.The MOR of texturally different soils was significantly correlated with saturated hydraulic conductivity at both the depths. Dispersion ratio was found to decrease with an increase in fineness of the texture of soil and the lowest value was recorded in silty clay loam soil,which decreased with depth. The modulus of rupture was significantly negatively correlative with the dispersion ratio.There was no role of calcium carbonate in influencing the values of MOR of soils. Similarly,the influence of pH, EC and SAR of soil solution on MOR was non-significant.A perusal of thevalues of the correlations between MOR and different soil properties showed that the MOR of soils of Haryana are positively correlated with silt + clay (r = 0.805) followed by water-stable aggregates (r = 0.774), organic carbon (r = 0.738), silt (r = 0.711), mean weight diameter (r = 0.608) and clay (r = 0.593) while negatively correlated with dispersion ratio (r = - 0.872), sand (r = -0.801) and hydraulic conductivity (r = -0.752) of soils.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Luiza Tymińska-Czabańska ◽  
Jarosław Socha ◽  
Marek Maj ◽  
Dominika Cywicka ◽  
Xo Viet Hoang Duong

Site productivity provides critical information for forest management practices and is a fundamental measure in forestry. It is determined using site index (SI) models, which are developed using two primary groups of methods, namely, phytocentric (plant-based) or geocentric (earth-based). Geocentric methods allow for direct site growth modelling, in which the SI is predicted using multiple environmental indicators. However, changes in non-static site factors—particularly nitrogen deposition and rising CO2 concentration—lead to an increase in site productivity, which may be visible as an age trend in the SI. In this study, we developed a geocentric SI model for oak. For the development of the SI model, we used data from 150 sample plots, representing a wide range of local topographic and site conditions. A generalized additive model was used to model site productivity. We found that the oak SI depended predominantly on physicochemical soil properties—mainly nitrogen, carbon, sand, and clay content. Additionally, the oak SI value was found to be slightly shaped by the topography, especially by altitude above sea level, and topographic position. We also detected a significant relationship between the SI and the age of oak stands, indicating the long-term increasing site productivity for oak, most likely caused by nitrogen deposition and changes in climatic conditions. The developed geocentric site productivity model for oak explained 77.2% of the SI variation.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


2020 ◽  
Vol 12 (7) ◽  
pp. 2917
Author(s):  
GwanSeon Kim ◽  
Mehdi Nemati ◽  
Steven Buck ◽  
Nicholas Pates ◽  
Tyler Mark

This paper proposes a novel application of the multinomial logit (MNL) model using Cropland Data Layer and field-level boundaries to estimate crop transition probabilities, which are used to generate forecast distributions of total acreage for five major crops produced in the state of Kentucky. These forecasts distributions have a wide range of applications that, besides providing interim acreage estimates ahead of the June Acreage Survey, can inform the ability of producers to incorporate new crops in the land-use rotation, investments in location-specific capital and input distribution as well informing the likelihood of adverse water quality events from nutrient run-off.


2019 ◽  
Vol 12 (6) ◽  
pp. 949-961 ◽  
Author(s):  
María Pérez-Fernández ◽  
Carole P Elliott ◽  
Alex Valentine ◽  
José Antonio Oyola

Abstract Aims Seeds of Rumex crispus from six provenances were studied in relation to their germination under drought and presence of nitrogen in the germination and emergence media. We also investigated whether adaptation to soil increases the ability of the species to colonize and establish in contrasting environments along a longitudinal gradient in western Spain by means of a reciprocal transplantation experiment. Methods We conducted a germination trial in the lab to test for the germination responses to water scarcity along a polyethylene glycol gradient and to varying concentrations of nitrogen compounds. Simultaneously reciprocal transplantations experiment was conducted, where seeds from six provenances were grown in the soils from the very same provenances. Seedling emergence, survivorship and fitness-related variables were measured in all plots. Important Findings We found that R. crispus has a cold-stratification requirement that enhances its germination. Significant differences between the six provenances were detected for time-to-germination, total seedling emergence, plant mortality and reproductive effort in all the experiments. The differences between provenances with respect to germination were confirmed by the significant statistical analyses of the variance, thus providing evidence that seeds from parent plants grown in different environmental conditions have an intrinsically different abilities to germinate and establish. Soil nitrogen content where seed germination and seedlings establish also play an important role in their performance in terms of survivorship and reproduction, being the higher levels of inorganic nitrogen and of microbial biomass those that increased biomass production, enhanced inflorescence formation and reduced plant mortality. We conclude that one of the main reasons for the spread and maintenance of R. crispus would be the increased levels of nitrogen in agricultural soils.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2016 ◽  
Vol 48 (3) ◽  
pp. 726-740 ◽  
Author(s):  
Daniele Masseroni ◽  
Alessio Cislaghi ◽  
Stefania Camici ◽  
Christian Massari ◽  
Luca Brocca

Many rainfall–runoff (RR) models are available in the scientific literature. Selecting the best structure and parameterization for a model is not straightforward and depends on a broad number of factors, including climatic conditions, catchment characteristics, temporal/spatial resolution and model objectives. In this study, the RR model ‘Modello Idrologico Semi-Distribuito in continuo’ (MISDc), mainly developed for flood simulation in Mediterranean basins, was tested on the Seveso basin, which is stressed several times a year by flooding events mainly caused by excessive urbanization. The work summarizes a compendium of the MISDc applications over a wide range of catchments in European countries and then it analyses the performances over the Seveso basin. The results show a good fit behaviour during both the calibration and the validation periods with a Nash–Sutcliffe coefficient index larger than 0.9. Moreover, the median volume and peak discharge errors calculated on several flood events were less than 25%. In conclusion, we can be assured that the reliability and computational speed could make the MISDc model suitable for flood estimation in many catchments of different geographical contexts and land use characteristics. Moreover, MISDc will also be useful for future support of real-time decision-making for flood risk management in the Seveso basin.


Sign in / Sign up

Export Citation Format

Share Document