POST MECHANICAL FAILURE FIRE DAMAGE CHARACTERIZATION OF GRAPHITE/EPOXY COMPOSITES

2021 ◽  
Author(s):  
ANIKET MOTE ◽  
HASNAA OUIDADI ◽  
DOUNIA BOUSHAB ◽  
MATTHEW PRIDDY ◽  
SANTANU KUNDU ◽  
...  

Fire damage involving mechanically failed composite aircraft structures can dramatically alter their exposed surface characteristics in ways that inhibit fire forensic analyses. In this work, the effects of fire exposure on mechanically failed Cytec T40- 800/Cycom® 5215 graphite/epoxy composites were examined. Coupon level vertical fire tests were performed on mechanically failed unnotched compression and in-plane shear graphite/epoxy specimens. The fire damage was characterized by visual inspection and scanning electron microscopy. The fire damage development in the specimens involved a concurrent and sequential interaction between multiple physical, chemical, and thermal processes. This damage included melt dripping, matrix decomposition, char, soot, matrix cracking, delamination, and residual thickness increases due to explosive outgassing. The composite thermal degradation due to heat conduction, combustion, and/or thermal deformation was significantly affected by the specimen layup, ply orientation relative to the heat source, and the fracture surface morphology. Plies burned with fibers oriented parallel to the flame axis conducted heat into the interior of the composite. This resulted in melt dripping, internal pockets of matrix decomposition, and surface char deposition that, in some cases, completely obscured pertinent aspects of fiber fracture surface morphology. In contrast, plies burned with fibers oriented perpendicular to the flame axis acted like a thermal protection layer that impeded (slowed) heat transfer to the specimen’s interior. Furthermore, the thermal damage development was influenced by the specimen layup and the total available free surface area created during mechanical failure. Specimens with more free surface area promoted better airflow and oxygen availability for combustion and sustained far more thermal degradation for given fire exposure. Key fractographic features in exposed fiber bundles were destroyed due to severe thermal oxidation and thinning. A thorough understanding of these coupon-level fire tests represents a critical first step in developing a coherent strategy for the Federal Aviation Authority post-crash forensic analysis of composite aircraft structures.

2009 ◽  
Vol 409 ◽  
pp. 358-361
Author(s):  
Jozef Miškuf ◽  
Kornel Csach ◽  
Alena Juríková ◽  
Elena D. Tabachnikova ◽  
Vladimir Z. Bengus ◽  
...  

The fracture surface morphology of Fe76Ni2Si9B13 bulk amorphous alloys failed in compression at temperatures from 4.2 to 300 K was investigated. The samples were prepared by the explosive compaction technique from amorphous powder. It has been found that fracture stress decreases with temperature from 300 to 4.2 K. In this temperature range, the brittle failure prevails. The failure propagates across particles and along particle boundaries too. The fracture micromorphology is riverlike pattern with fine dimples.


2021 ◽  
Vol 39 (2A) ◽  
pp. 196-205
Author(s):  
Zainab M. Abdul Monem ◽  
Jawad K. Oleiwi ◽  
Qahtan A. Hamad

In the current Research , the heat cured   matrix material powder of PMMA was reinforced with peanut and walnut shells (natural powders) which are chemically treated with 5% (w/v) (NaOH) to improve the matrix bonding (PMMA) before being used as a reinforcing powder and adding to exactly similar averages particle sizes ≤ (53µm), with different weight fractions of (4, 8, and 12 wt.%). The ASTM D638 is used for composite specimens of the tensile test. The results indicated that the Elastic modulus values reached its maximum value at (8 wt.%.) when reinforced with peanut shells particles (1.053Gpa) , while ,the values of tensile strength, elongation percentage at break, decrease as the weight fraction of peanut and walnut shells powder increase and the lowest values is obtained by reinforcing with peanut shells particles to reach their minimum values at (12 wt.%.) where the lowest values of them are (29 MPa, 2.758% ) respectively. The fracture surface morphology of pure PMMA seemed to be homogenous morphology in (SEM) test, whereas the fracture surface morphology of PMMA composite reinforced by (peanut and walnut shells) powders and shows a roughness fracture surface morphology this refer to semi ductile to ductile materials.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Kamryn Keys ◽  
Ann H. Ross

In forensic scenarios involving homicide, human remains are often exposed to fire as a means of disposal and/or obscuring identity. Burning human remains can result in the concealment of traumatic injury, the creation of artifacts resembling injury, or the destruction of preexisting trauma. Since fire exposure can greatly influence trauma preservation, methods to differentiate trauma signatures from burning artifacts are necessary to conduct forensic analyses. Specifically, in the field of forensic anthropology, criteria to distinguish trauma from fire signatures on bone is inconsistent and sparse. This study aims to supplement current forensic anthropological literature by identifying criteria found to be the most diagnostic of fire damage or blunt force trauma. Using the skulls of 11 adult pigs (Sus scrofa), blunt force trauma was manually produced using a crowbar and flat-faced hammer. Three specimens received no impacts and were utilized as controls. All skulls were relocated to an outdoor, open-air fire where they were burned until a calcined state was achieved across all samples. Results from this experiment found that blunt force trauma signatures remained after burning and were identifiable in all samples where reassociation of fragments was possible. This study concludes that distinct patterns attributed to thermal fractures and blunt force fractures are identifiable, allowing for diagnostic criteria to be narrowed down for future analyses.


2017 ◽  
Vol 31 (12) ◽  
pp. 1609-1618
Author(s):  
Long Lijuan ◽  
He Wentao ◽  
Li Juan ◽  
Xiang Yushu ◽  
Qin Shuhao ◽  
...  

In this work, the effects of inorganic phosphinate flame retardant of aluminum hypophosphite (AP) and organic phosphinate flame retardant of ethyl substituted phosphinates (AP-ethyl) on the thermal degradation, flame performance, and mechanical properties of polyamide 6 (PA6) were investigated. Scanning electron micrograph showed AP with the shape of bulk and the mean size of 8 μm while AP-ethyl with irregular shape and the mean size of 30 μm. Thermal analysis indicated that the thermal degradation behavior of flame-retardant PA6 was different from pure PA6. Moreover, the cone calorimeter test results revealed that peak heat release rate (PHRR) of PA6/AP (85/15) and PA6/AP-ethyl (85/15) decreased by 51% and 64%, respectively, compared with pure PA6. Furthermore, pure PA6 showed ductile stress–strain curve with the tensile strength of 54.8 MPa. However, PA6/AP and PA6/AP-ethyl displayed brittle stress–strain curve and their tensile strength decreased to 52.3 and 47.1 MPa, respectively. In addition, pure PA6 showed a glossy and tough fracture surface morphology. The rough fracture surface morphologies for PA6/AP and PA6/AP-ethyl were observed, and the interface of PA6/AP was more obscure than that of PA6/AP-ethyl. Consequently, the small particle size of AP had a more uniform dispersion in PA6 matrix.


2013 ◽  
Vol 469 ◽  
pp. 148-151
Author(s):  
Zhi Jian Li ◽  
Qing Jun Meng

The Green food-packaging membranes were prepared with N-methylmorpholine-N-oxide (NMMO) as the major solvent by using L-S phase inversion technique. Scanning electron microscopy (SEM) was adopted to characterize fracture surface morphology of membrane, and tensile machine was adopted to test the membrane strength performance. Research results show with the concentration of cellulose increases from 5% to 9%, structure of membrane becomes compact, aperture size becomes small and even, value of tensile strength increases 59.6%, and value of elongation increases 67.5%. With dissolving temperature increases from 100°C to 120°C, structure of membrane becomes loose, pore size becomes big and uneven, value of tensile strength decreases 19.2%, and value of elongation decreases 13.1%. The research can provide the theoretical reference for optimizing technology, adjusting the structure of membrane, and improving the performances of membrane.


2014 ◽  
Vol 5 (2) ◽  
pp. 97-112 ◽  
Author(s):  
Dhionis Dhima ◽  
Maxime Audebert ◽  
Abdelhamid Bouchaïr

Two different configurations of steel-to-timber connections are tested in bending in normal conditions and under ISO-fire exposure. To observe the influence of clearances in the connection area on the fire resistance of the connections, two specimens were previously tested under cyclic loadings. These tests consist in the application of loading-unloading cycles by controlled displacements. The experimental results of connections tested in cold and under ISO-fire conditions are analyzed and commented. These results are then used to validate a finite element model. This model allows to simulate numerically the evolution of the temperatures inside the connections as well as their mechanical and thermo-mechanical behaviours. The thermal modelling is validated on the basis of the temperature-time evolutions measured during fire tests. The nonlinear modelling of the mechanical behaviour of timber is done using the Hill yield criterion in combination with the Tsaï-Wu failure criterion. The thermo-mechanical modelling allows obtaining fire resistances of the tested connections in good agreement with the experimental ones.


2013 ◽  
Vol 3 (0) ◽  
Author(s):  
Alena Juríková ◽  
Jozef Miškuf ◽  
Kornel Csach ◽  
Elena Tabachnikova ◽  
Vladimír Bengus

Sign in / Sign up

Export Citation Format

Share Document