scholarly journals Power Efficient Multiply Accumulate Architectures using Modified Parallel Prefix Adders for Low Power Applications

2020 ◽  
Vol 9 (4) ◽  
pp. 615-623
Author(s):  
Rakesh S ◽  
K. S. Vijula Grace

In the Design of arithmetic circuits reducing area, high speed and power are the major areas in VLSI system design. In this paper parallel prefix adders like Kogge-stone adder, Breunt-Kung adder, Ladner-Fischer adder is designed .Radix-4 Booth multiplier is designed by using Kogge-Stone adder. 16 bit Vedic multiplier is done by using Urdhwa Triyambaka sutra .8bit Vedic division is implemented by using Crumbs method so as to reduce the area, LUT tables and increase the speed as well as to reduce the Power dissipiation. The design is synthesized using Xilinx ISE 14.1 design suite.


2014 ◽  
Vol 573 ◽  
pp. 194-200 ◽  
Author(s):  
P. Kowsalya ◽  
M. Malathi ◽  
Palaniappan Ramanathan

Addition is a fundamental operation of all Arithmetic and Logic Units (ALU).The speed of addition operation decides the computational frequency of ALU. In order to improve the performance of the binary adder, the parallel prefix adder are preferred. There are various parallel prefix adders available. This work focuses on designing 8-bit prefix adders such as Brent Kung ,Kogge Stone and Sklansky adders using GDI technique. The performance of these GDI based prefix adders are compared with that of CMOS based prefix adder. GDI based prefix adders out performs CMOS based prefix adders in terms of power delay product (PDP). The design is implemented and simulated by DSCH2 and MICROWIND tool .The simulation result reveal about 31%,40% and 50 % of power saving is attained and the number of transistors also reduced.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 647
Author(s):  
J Lakshmi Prasanna ◽  
V Sahiti ◽  
E Raghuveera ◽  
M Ravi Kumar

A 128-Bit Digital Comparator is designed with Digital Complementary Metal Oxide Semiconductor (CMOS) logic, with the use of Parallel Prefix Tree Structure [1] technique. The comparison is performed on Most Significant Bit (MSB) to the Least Significant Bit (LSB). The comparison for the lower order bits carried out only when the MSBs are equal. This technique results in Optimized Power consumption and improved speed of operation. To make the circuit regular, the design is made using only CMOS logic gates. Transmission gates were used in the existing design and are replaced with the simple AND gates. This 128-Bit comparator is designed using Cadence TSMC 0.18µm technology and optimized the Power dissipation to 0.28mW and with a Delay of 0.87μs. 


2018 ◽  
Vol 7 (2.16) ◽  
pp. 52
Author(s):  
Dharmavaram Asha Devi ◽  
Chintala Sandeep ◽  
Sai Sugun L

The proposed paper is discussed about the design, verification and analysis of a 32-bit Processing Unit.  The complete front-end design flow is processed using Xilinx Vivado System Design Suite software tools and target verification is done by using Artix 7 FPGA. Virtual I/O concept is used for the verification process. It will perform 32 different operations including parity generation and code conversions: Binary to Grey and Grey to Binary. It is a low power design implemented with Verilog HDL and power analysis is implementedwith clock frequencies ranging from 10MhZ to 100GhZ. With all these frequencies, power analysis is verified for different I/O standards LVCMOS12, LVCMOS25 and LVCMOS33.  


Sign in / Sign up

Export Citation Format

Share Document