scholarly journals Tectonic Evolution of the Adirondack Mountains and Grenville Orogen Inliers within the USA

2013 ◽  
Vol 40 (4) ◽  
pp. 318 ◽  
Author(s):  
James M. McLelland ◽  
Bruce W. Selleck ◽  
Marion E. Bickford

Recent investigations in geochronology and tectonics provide important new insights into the evolution of the Grenville Orogen in North America. Here, we summarize results of this research in the USA and focus upon ca. 1.4–0.98 Ga occurrences extending from the Adirondack Mountains to the southern Appalachians and Texas. Recent geochronology (mainly by U/Pb SHRIMP) establishes that these widely separated regions experienced similar tectonomagmatic events, i.e., the Elzevirian (ca. 1.25–1.22 Ga), Shawinigan (ca. 1.2–1.14 Ga), and Grenvillian (ca. 1.09–0.98 Ga) orogenies and associated plate interactions. Notwithstanding these commonalities, Nd model ages and Pb isotopic mapping has revealed important differences that are best explained by the existence of contrasting compositions of deep crustal reservoirs beneath the Adirondacks and the southern Appalachians. The isotopic compositions for the Adirondacks lie on the same Pb–Pb array as those for the Grenville Province, the Granite-Rhyolite Province and the Grenvillian inliers of Texas suggesting that they all developed on Laurentian crust. On the other hand, data from the southern Appalachians are similar to those of the Sunsas Terrane in Brazil and suggest that Amazonian crust with these Pb–Pb characteristics was thrust onto eastern Laurentia during its Grenvillian collision with Amazonia and subsequently transferred to the latter during the late Neoproterozoic breakup of the supercontinent, Rodinia, and the formation of the Iapetus Ocean. The ca. 1.3–1.0 Ga Grenville Orogen is also exposed in the Llano Uplift of Texas and in small inliers in west Texas and northeast Mexico. The Llano Uplift contains evidence for a major collision with a southern continent at ca. 1.15–1.12 Ga (Kalahari Craton?), magmatic arcs, and back-arc and foreland basins, all of which are reviewed.     The Grenvillian Orogeny is considered to be the culminating tectonic event that terminated approximately 500 m.y. of continental margin growth along southeastern Laurentia by accretion, continental margin arc magmatism, and metamorphism. Accordingly, we briefly review the tectonic and magmatic histories of these Paleoproterozoic and Mesoproterozoic pre-Grenvillian orogens, i.e., Penokean, Yavapai, and Mazatzal as well as the Granite-Rhyolite Province and discuss their ~5000 km transcontinental span.SOMMAIREDes recherches récentes en géochronologie et en tectonique révèlent d’importants faits nouveaux sur l’évolution de l’orogénie de Grenville en Amérique du Nord.  Nous présentons ici un sommaire des résultats de cet effort de recherche aux USA en mettant l’accent sur les indices datés entre env. 1,4 et 0,98 Ga, à partir des monts Adirondack jusqu’au sud des Appalaches et au Texas.  Des données géochronologiques récentes (par microsonde SHRIMP principalement) indiquent que les roches de ces régions très éloignées les unes des autres ont subies l’effet d’épisodes tectonomagmatiques similaires, par exemple, aux orogenèses de l’Elzévirien (env. 1.25–1.22 Ga), de Shawinigan (env. 1.2–1.14 Ga), et du Grenvillien (env. 1.09–0.98 Ga), ainsi que des interactions des plaques associées.  Malgré ces points communs, la chronologie Nd et la cartographie isotopique Pb a révélé des différences importantes qui s’expliquent plus aisément par des compositions contrastées des réservoirs profonds de croûte sous les Adirondacks et le sud des Appalaches.  Les compositions isotopiques des Adirondacks sont de la même gamme Pb-Pb que ceux de la Province de Grenville, de la Province Granite-rhyolite et des boutonnières grenvilliennes du Texas, suggérant qu'ils se sont tous développées sur la croûte des Laurentides.  Par ailleurs, les données des Appalaches du sud sont semblables à celles du terrane de Sunsas au Brésil, ce qui incite à penser que la croûte amazonienne, avec de telles caractéristiques Pb-Pb, a été poussée sur la portion est de Laurentia lors de sa collision grenvillienne avec l’Amazonie puis laissée à cette dernière au cours de la rupture du supercontinent Rodinia vers la fin du Néoprotérozoïque, avec la formation de l'océan Iapetus.  L’orogène de Grenville (1,3 à 1,0 Ga env.) est également exposé dans le soulèvement de Llano au Texas et dans de petites boutonnières dans l'ouest du Texas et le nord du Mexique.  Le soulèvement de Llano montre des indices d'une collision majeure avec un continent au sud, entre env. 1,15 et 1,12 Ga (craton de Kalahari?), des zones d’arcs magmatiques, d'arrière-arc et de bassin d'avant-pays, chacun étant présenté ci-dessous.    L'orogenèse de Grenville est considéré comme l'événement tectonique culminant qui marqué la fin d’une période d’environ 500 ma d’accroissement de la marge continentale le long de la bordure sud-est de la Laurentie, par accrétion, magmatisme d’arc de marge continentale, et métamorphisme.  C’est pourquoi, nous passons brièvement en revue l'histoire tectonique et magmatique de ces orogènes pré-grenvilliennes paléoprotérozoïques et mésoprotérozoïques, pénokéenne, de Yavapai, et de Mazatzal ainsi que la Province de Granite-rhyolite, et discutons de son étendue sur env. 5 000 km. 

2014 ◽  
Vol 41 (4) ◽  
pp. 483 ◽  
Author(s):  
Leslie R. Fyffe

Recently gathered stratigraphic and U–Pb geochronological data indicate that the pre-Triassic rocks of the Grand Manan Terrane on the eastern side of Grand Manan Island can be divided into: (1) Middle Neoproterozoic (late Cryogenian) quartzose and carbonate sedimentary sequences (The Thoroughfare and Kent Island formations); (2) a Late Neoproterozoic (early Ediacaran) volcanic-arc sequence (Ingalls Head Formation); and (3) Late Neoproterozioc (mid- Ediacaran) to earliest Cambrian (early Terreneuvian) sedimentary and volcanic-arc sequences (Great Duck Island, Flagg Cove, Ross Island, North Head, Priest Cove, and Long Pond Bay formations). A comparison to Precambrian terranes on the New Brunswick mainland (Brookville and New River terranes) and in adjacent Maine (Islesboro Terrane) suggests that the sedimentary and volcanic sequences of the Grand Manan Terrane were deposited on the continental margin of a Precambrian ocean basin that opened during the breakup of Rodinia in the Middle Neoproterozoic (Cryogenian) and closed by the Early Cambrian (Terreneuvian) with the final assembling of Gondwana. Rifting associated with the initial opening of the Paleozoic Iapetus Ocean began in the Late Neoproterozoic (late Ediacaran) and so overlapped in time with the closing of the Precambrian Gondwanan ocean. The southeastern margin of the Iapetus Ocean is defined by thick sequences of quartz-rich Cambrian sediments (within the St. Croix and Miramichi terranes of New Brunswick) that were largely derived from recycling of Precambrian passive-margin sedimentary rocks preserved in the Grand Manan and Brookville terranes of New Brunswick and in the Islesboro Terrane of Maine. These Precambrian terranes are interpreted to represent dextrally displaced basement remnants of the Gondwanan continental margin of Iapetus, consistent with the model of a two-sided Appalachian system proposed by Hank Williams in 1964 based on his work in Newfoundland.SOMMAIREDes données stratigraphiques et géochronologiques U–Pb obtenues récemment indiquent que les roches prétriasiques du terrane de Grand Manan du côté est de l’île Grand Manan peuvent être répartis en: 1) séquences sédimentaires quartzeuses et carbonatées du Néoprotérozoïque moyen (Cryogénien tardif) (formations de Thoroughfare et de Kent Island); 2) séquence d’arc volcanique du Néoprotérozoïque tardif (Édiacarien précoce) (formation d’Ingalls Head); 3) séquences sédimentaires et d’arc volcanique du Néoprotérozoïque tardif (milieu de l’Édiacarien) au tout début du Cambrien (Terreneuvien précoce) (formations de Great Duck Island, Flagg Cove, Ross Island, North Head, Priest Cove et Long Pond Bay). Une comparaison avec des terranes du Précambrien dans la partie continentale du Nouveau-Brunswick (terranes de Brookville et New River) et dans le Maine adjacent (terrane d’Islesboro) semble indiquer que les séquences sédimentaires et volcaniques du terrane de Grand Manan se sont déposées sur la marge continentale d’un bassin océanique précambrien qui s’est ouvert durant la fracturation de la Rodinia au Néoprotérozoïque moyen (Cryogénien) et s’est fermé au Cambrien précoce (Terreneuvien) avec l’assemblage final du Gondwana. La distension continentale associée à l’ouverture initiale de l’océan Iapetus au Paléozoïque a commencé au Néoprotérozoïque tardif (Édiacarien tardif) et a donc partiellement coïncidé avec la fermeture de l’océan précambrien du Gondwana. La marge sud-est de l’océan Iapetus est définie par d’épaisses séquences de sédiments cambriens riches en quartz (dans les terranes de St. Croix et de Miramichi du Nouveau-Brunswick) issus en grande partie du recyclage de roches sédimentaires de la marge continentale passive du Précambrien préservées dans les terranes de Grand Manan et de Brookville au Nouveau-Brunswick et dans le terrane d’Islesboro dans le Maine. Ces terranes précambriens sont interprétés comme la représentation de vestiges, ayant subi un déplacement dextre, du socle de la marge continentale gondwanienne de l’océan Iapetus, ce qui concorde avec le modèle d’un système appalachien à deux côtés proposé par Hank Williams en 1964 sur la base de ses travaux à Terre-Neuve. 


1979 ◽  
Vol 16 (3) ◽  
pp. 792-807 ◽  
Author(s):  
Harold Williams

The Appalachian Orogen is divided into five broad zones based on stratigraphic and structural contrasts between Cambrian–Ordovician and older rocks. From west to east, these are the Humber, Dunnage, Gander, Avalon, and Meguma Zones.The westerly three zones fit present models for the development of the orogen through the generation and destruction of a late Precambrian – Early Paleozoic Iapetus Ocean. Thus, the Humber Zone records the development and destruction on an Atlantic-type continental margin, i.e., the ancient continental margin of Eastern North America that lay to the west of Iapetus; the Dunnage Zone represents vestiges of Iapetus with island arc sequences and mélanges built upon oceanic crust; and the Gander Zone records the development and destruction of a continental margin, at least in places of Andean type, that lay to the east of Iapetus.The Precambrian development of the Avalon Zone relates either to rifting and the initiation of Iapetus or to subduction and a cycle that preceded the opening of Iapetus. During the Cambrian Period, the Avalon Zone was a stable platform or marine shelf.Cambrian–Ordovician rocks of the Meguma Zone represent either a remnant of the continental embankment of ancient Northwest Africa or the marine fill of a graben developed within the Avalon Zone.Silurian and younger rocks of the Appalachian Orogen are mixed marine and terrestrial deposits that are unrelated to the earlier Paleozoic zonation of the system. Silurian and later development of the orogen is viewed as the history of deposition and deformation in successor basins that formed across the already destroyed margins and oceanic tract of Iapetus.


2017 ◽  
Vol 154 (4) ◽  
pp. 903-913 ◽  
Author(s):  
ALAN DICKIN ◽  
JACOB STRONG ◽  
GABRIEL ARCURI ◽  
ANNIKA VAN KESSEL ◽  
LUCIA KRIVANKOVA-SMAL

AbstractThe Grenville Province forms the exhumed remnants of a 1.1 Ga collisional orogeny that telescoped an older continental margin. Terranes with distinct crustal formation ages can be mapped using Nd isotopes, revealing a ramp–flat thrust structure. The ramp is identified by the presence of retrogressed eclogites, and its trajectory is refined using Nd model ages. The main allochthon is locally overlain by the Parry Sound klippe, but is also underlain by a tectonic duplex. Northwest-directed nappes represent remnants of a corrugated thrust sheet, but a ring-shaped remnant was also preserved where the thrust sheet was down-buckled under the dense rocks of Parry Sound domain.


2002 ◽  
Vol 39 (5) ◽  
pp. 795-829 ◽  
Author(s):  
Charles F Gower ◽  
Thomas E Krogh

The geological evolution of the eastern Grenville Province can be subdivided into three stages. During the first stage, namely pre-Labradorian (> 1710 Ma) and Labradorian (1710–1600 Ma) events, a continental-marginal basin was created and subsequently destroyed during accretion of a magmatic arc formed over a south-dipping subduction zone. Subduction was short-lived and arrested, leading to a passive continental margin. The second stage addresses events between 1600 and 1230 Ma. The passive margin lasted until 1520 Ma, following which a continental-margin arc was constructed during Pinwarian (1520–1460 Ma) orogenesis. Elsonian (1460–1230 Ma) distal-inboard, mafic and anorthositic magmatism, decreasing in age northward, is explained by funnelled flat subduction, possibly associated with an overridden spreading centre. As the leading edge of the lower plate advanced, it was forced beneath the Paleoproterozoic Torngat orogen root between the Archean Superior and North Atlantic cratons, achieving its limit of penetration by 1290 Ma. Static north-northeast-trending rifting then ensued, with mafic magmatism flanked by felsic products to the north and south. Far-field orogenic effects heralded the third stage, lasting from 1230 to 955 Ma. Until 1180 Ma, the eastern Grenville Province was under the distal, mild influence of Elzevirian orogenesis. From 1180 to 1120 Ma, mafic and anorthositic magmatism occurred, attributed to back-arc tectonism inboard of a post-Elzevirian Laurentian margin. Quiescence then prevailed until Grenvillian (1080–980 Ma) continent–continent collision. Grenvillian orogenesis peaked in different places at different times as thrusting released stress, thereby precipitating its shift elsewhere (pressure-point orogenesis). High-grade metamorphism, thrusting and minor magmatism characterized the Exterior Thrust Zone, in contrast to voluminous magmatism in the Interior Magmatic Belt. Following final deformation, early posttectonic anorthositic–alkalic–mafic magmatism (985–975 Ma) and late posttectonic monzonitic–syenite–granite magmatism (975–955 Ma) brought the active geological evolution of this region to a close.


1979 ◽  
Vol 16 (12) ◽  
pp. 2219-2235 ◽  
Author(s):  
Q. H. J. Gwyn ◽  
A. Dreimanis

Two main source areas of heavy minerals in tills have been defined in the Great Lakes region: a source in the Superior and Southern Provinces and another in the Grenville Province. The Superior–Southern source is typified by low heavy mineral content and high epidote percentage in contrast to the Grenville source which has a high content of heavy minerals of which garnet, tremolite, and to a lesser extent sphene and orthopyroxene are characteristic. The Huron lobe tills have a mineral suite characteristic of the Superior–Southern source. Two subsources can be distinguished in the Superior–Southern area; however, they are too limited in extent to be characteristic of major glacial lobes. Two other subsources have been identified in the Grenville provenance area: a western Grenville subsource containing abundant garnet and having a low purple–red garnet ratio; and an eastern Grenville subsource distinguished by high garnet and tremolite content and a garnet ratio generally greater than one. The western and eastern Grenville subsources are the provenance areas for the tills of the Georgian Bay lobe and the Ontario–Erie lobe respectively. A possible third Grenville subsource in the Adirondack Mountains is distinguished from other Grenville sources by a lower heavy mineral content and more abundant orthopyroxene and magnetic minerals. This assemblage may be characteristic of the southern portion of the Ontario–Erie lobe.


Author(s):  
P. Stone ◽  
J. A. Evans

ABSTRACTThe progressive changes in the provenance of Silurian greywacke turbidites in the Southern Uplands terrane reflect geotectonic events at the Laurentian continental margin during closure of the Iapetus Ocean. In the northern Gala Group, juvenile andesitic detritus in some beds gives εNd values no lower than −4·2; more commonly, quartzo-feldspathic greywackes have εNd values in the −5·5 to −6·7 range, produced by the mixing of juvenile plutonic and Proterozoic basement detritus during arc unroofing. In the southern (younger) Gala Group, Proterozoic εNd values range down from −7·7 to −11·2 with only sporadic evidence for a juvenile component. An abrupt change is seen between the Gala Group and its tectonostratigraphical successor, the Hawick Group. In the latter, εNd values have a compact range between −4·7 and −6·6, indicating the renewed dominance of a more juvenile, plutonic provenance. Regional variations in the Sr/Rb ratio suggest that this was more evolved than the source of the Gala Group plutonic material. The Wenlock greywackes of the Riccarton Group have εNd values in the range −5·1 to −7·8, overlapping with the Hawick Group and with coeval greywackes from both the Midland Valley and Lakesman terranes. Overall, the data support proposals that the Iapetus Ocean had effectively closed by mid-Silurian times. Conversely, data from greywacke boulders in the basal Old Red Sandstone conglomerate of the Midland Valley terrane militate against its Wenlock juxtaposition with the Southern Uplands.


2014 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
David M. Chew ◽  
Cees R. Van Staal

A combination of deep seismic imaging and drilling has demonstrated that the ocean-continent transition (OCT) of present-day, magma-poor, rifted continental margins is a zone of hyperextension characterized by extreme thinning of the continental crust that exhumed the lowermost crust and/or serpentinized continental mantle onto the seafloor. The OCT on present-day margins is difficult to sample, and so much of our knowledge on the detailed nature of OCT sequences comes from obducted, magma-poor OCT ophiolites such as those preserved in the upper portions of the Alpine fold-and-thrust belt. Allochthonous, lens-shaped bodies of ultramafic rock are common in many other ancient orogenic belts, such as the Caledonian – Appalachian orogen, yet their origin and tectonic significance remains uncertain. We summarize the occurrences of potential ancient OCTs within this orogen, commencing with Laurentian margin sequences where an OCT has previously been inferred (the Dalradian Supergroup of Scotland and Ireland and the Birchy Complex of Newfoundland). We then speculate on the origin of isolated occurrences of Alpine-type peridotite within Laurentian margin sequences in Quebec – Vermont and Virginia – North Carolina, focusing on rift-related units of Late Neoproterozoic age (so as to eliminate a Taconic ophiolite origin). A combination of poor exposure and pervasive Taconic deformation means that origin and emplacement of many ultramafic bodies in the Appalachians will remain uncertain. Nevertheless, the common occurrence of OCT-like rocks along the whole length of the Appalachian – Caledonian margin of Laurentia suggests that the opening of the Iapetus Ocean may have been accompanied by hyperextension and the formation of magma-poor margins along many segments.SOMMAIREDes travaux d’imagerie sismique et des forages profonds ont montré que la transition océan-continent (OCT) de marges continentales de divergence pauvre en magma exposée de nos jours, correspond à une zone d’hyper-étirement tectonique caractérisée par un amincissement extrême de la croûte continentale, qui a exhumé sur le fond marin, jusqu’à la tranche la plus profonde de la croûte continentale, voire du manteau continental serpentinisé.  Parce qu’on peut difficilement échantillonner l’OCT sur les marges actuelles, une grande partie de notre compréhension des détails de la nature de l’OCT provient d’ophiolites pauvres en magma d’une OCT obduite, comme celles préservées dans les portions supérieures de la bande plissée alpine.  Des masses lenticulaires de roches ultramafiques allochtones sont communes dans de nombreuses autres bandes orogéniques anciennes, comme l’orogène Calédonienne-Appalaches, mais leur origine et signification tectonique reste incertaine.  Nous présentons un sommaire des occurrences d’OCT potentielles anciennes de cet orogène, en commençant par des séquences de la marge laurentienne, où la présence d’OCT a déjà été déduites (le Supergroupe Dalradien d’Écosse et d'Irlande, et le complexe de Birchy de Terre-Neuve).  Nous spéculons ensuite sur l'origine de cas isolés de péridotite de type alpin dans des séquences de marge des Laurentides du Québec-Vermont et de la Virginie-Caroline du Nord, en nous concentrant sur les unités de rift d'âge néoprotérozoïque tardif (pour éviter les ophiolites du Taconique).  La conjonction d’affleurements de piètre qualité et de la déformation taconique omniprésente, signifie que l'origine et la mise en place de nombreuses masses ultramafiques dans les Appalaches demeureront incertaines.  Néanmoins, la présence fréquente de roches de type OCT tout le long de la marge Calédonnienne-Appalaches de Laurentia suggère que l'ouverture de l'océan Iapetus peut avoir été accompagnée d’hyper-étirement et de la formation de marges pauvres en magma le long de nombreux segments.


2014 ◽  
Vol 41 (3) ◽  
pp. 321 ◽  
Author(s):  
William A. Thomas

Transform faults along the Iapetan rifted continental margin of Laurentia offset the continental rift and/or bound domains of oppositely dipping low-angle detachments. Rift-parallel and transform-parallel intracratonic fault systems extend into continental crust inboard from the rifted margin. Ages of synrift igneous rocks, ranging from 765 to 530 Ma, document non-systematic diachroneity of rifting along the Iapetan margin. Synrift sedimentary accumulations show abrupt variations in thickness across transform faults, and some concentrations of synrift igneous rocks are distributed along transform faults and transform-parallel intracratonic fault systems. The greatest thicknesses of Cambrian–Ordovician passive-margin shelf-carbonate deposits are along transform margins and in continental-margin basins along transform faults, as well as along transform-parallel intracratonic fault systems, indicating anomalously great post-rift thermal subsidence along transform faults. Along the Ordovician–Permian Appalachian-Ouachita orogenic belt, a diachronous array of synorogenic clastic wedges fills foreland basins, recording tectonic-load-driven flexural subsidence of the lithosphere. The greatest thicknesses of synorogenic clastic wedges of all ages are consistently in foreland basins along transform margins and inboard from intersections of transform faults with the rifted margin, indicating systematically weaker lithosphere along transform faults. The distinctive and pervasive properties and behaviour of the lithosphere along transform faults in successive tectonic settings suggest fundamental controls on tectonic inheritance at transform faults. Recent models for continental rifting incorporate ductile extension of the mantle lithosphere beneath brittle extension of the crust; the domain of ductile extension of the mantle lithosphere may reach significantly inboard from the rifted margin of the brittle crust, accounting for rift-parallel extensional faults in the crust inboard from the rifted margin. A transform offset of a rift in brittle crust requires a similar offset in ductile extension of the mantle lithosphere, leading to differential ductile flow on opposite sides of the transform and imparting a transform-parallel distributed-shear fabric. Transform-parallel distributed shear in the mantle lithosphere provides a mechanism for brittle transform-parallel fault systems in the continental crust. Studies of seismic anisotropy show fast directions parallel with transform faults, indicating systematic orientation of crystals through transform-parallel distributed shear in the mantle lithosphere.SOMMAIRELes failles transformantes le long de la marge continentale divergente japétienne de la Laurentie décalent le rift continental et/ou les domaines accrétés en des décollements à pendages opposés faibles.  Des systèmes de failles intracratoniques parallèles au rift, et parallèles à la transformation, pénètrent vers l’intérieur de la croûte continentale à partir de la marge de rift.  Les âges des roches ignées syn-rift, entre 765 Ma et 530 Ma, témoignent d’une activité de rifting diachronique non-systématique le long de la marge japétienne.  Des empilements sédimentaires syn-rifts montrent des variations abruptes d’épaisseur d’une faille transformante à l’autre, et des concentrations de roches ignées syn-rifts se répartissent le long des systèmes de failles transformantes et de failles intracratoniques parallèles.  Les accumulations les plus épaisses de carbonates de plateforme de marge continentale passive se trouvent le long des marges de cisaillement et dans les bassins de marge continentale le long de failles transformantes, de même qu’au long des systèmes de failles intracratoniques parallèles, évoquant une subsidence anormalement forte le long des failles transformantes.  Le long de la bande orogénique ordovicienne-permienne Appalaches-Ouachita, une gamme diachronique de prismes clastiques synorogéniques remplit les bassins d’avant-pays, attestant d’une subsidence par flexure lithosphérique d’origine tectonique.  Les plus grandes épaisseurs de prismes clastiques synorogéniques à tous les âges sont toujours situées dans les bassins d’avant-pays le long des marges transformantes, et vers l’intérieur, à partir des intersections des failles transformantes avec la marge de rift, indiquant une lithosphère systématiquement plus fragile le long des failles transformantes.  Les propriétés particulières et le comportement généralisés de la lithosphère le long des failles transformantes dans les contextes tectoniques successifs sont la marque de contrôles fondamentaux sur l'héritage tectonique des failles transformantes.  Les modèles récents de rifting continental comportent une extension ductile de la lithosphère mantellique sous l’extension cassante de la croûte; le domaine d'extension ductile de la lithosphère mantellique peut s’étendre significativement vers l’intérieur de la marge de divergence de la croûte cassante, d’où les failles d'extension parallèle au rift, à l’intérieur de la croûte de la marge de divergence.  Un décalage de transformation de rift de la croûte comporte un décalage du même genre de l’extension ductile de la lithosphère mantellique, ce qui implique un différentiel de flux ductile sur les bords opposés de la transformation, d’où cette fabrique d’extension parallèle à la transformation.  L’extension parallèle à la transformation de la lithosphère mantellique fournit un mécanisme qui explique les systèmes de failles transformantes parallèles dans la croûte continentale.  Les études de l’anisotropie sismique montre les grandes vitesses de propagation parallèles aux failles de transformations, ce qui indique une orientation systématique des cristaux induite par une extension répartie selon les cassures transformantes dans la lithosphère mantellique.


2020 ◽  
Author(s):  
Sean Regan ◽  
◽  
William H. Peck ◽  
Justin Mistikawy ◽  
Michael L. Williams ◽  
...  

Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1240-1261 ◽  
Author(s):  
S.P. Regan ◽  
G.J. Walsh ◽  
M.L. Williams ◽  
J.R. Chiarenzelli ◽  
M. Toft ◽  
...  

Abstract Extensional deformation in the lower to middle continental crust is increasingly recognized and shown to have significant impact on crustal architecture, magma emplacement, fluid flow, and ore deposits. Application of the concept of extensional strain to ancient orogenic systems, like the Grenville province of eastern North America, has helped decipher the structural evolution of these regions. The Marcy massif is a ∼3000 km2 Mesoproterozoic anorthosite batholith in the Adirondack Mountains (New York, USA) of the southern Grenville province. Bedrock geology mapping at 1:24,000 scale paired with characterization of bedrock exposed by recent landslides provides a glimpse into the structural architecture of the massif and its margin. New data demonstrate granulite- to amphibolite-facies deformational fabrics parallel the margin of the batholith, and that the Marcy massif is draped by a southeast-directed detachment zone. Within the massif, strain is localized into mutually offsetting conjugate shear zones with antithetic kinematic indicators. These relationships indicate that strain was coaxial within the Marcy massif, and that subsimple shear components of strain were partitioned along its margin. In situ U–Th–total Pb monazite analysis shows that deformation around and over the Marcy massif occurred from 1070 to 1060 Ma during granulite-facies metamorphism, and monazite from all samples record evidence for fluid-mediated dissolution reprecipitation from 1050 to 980 Ma. We interpret that rocks cooled isobarically after accretionary orogenesis and emplacement of the anorthosite-mangerite-charnockite-granite plutonic suite at ca. 1160–1140 Ma. Gravitational collapse during the Ottawan phase of the Grenville orogeny initiated along a southeast-directed detachment zone (Marcy massif detachment zone), which accommodated intrusion of the Lyon Mountain Granite Gneiss, and facilitated substantial fluid flow that catalyzed the formation of major ore deposits in the Adirondack Highlands.


Sign in / Sign up

Export Citation Format

Share Document