scholarly journals Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization

2021 ◽  
Vol 51 (1) ◽  
pp. 42-62
Author(s):  
Ralf Borndörfer ◽  
Thomas Eßer ◽  
Patrick Frankenberger ◽  
Andreas Huck ◽  
Christoph Jobmann ◽  
...  

Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are addressed using a novel coarse-to-fine method that implements a hierarchical column generation over three levels of detail. This algorithm is the mathematical core of DB’s fleet employment optimization (FEO) system for rolling stock rotation planning. FEO’s impact within DB’s planning departments has been revolutionary. DB has used it to support the company’s procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for crossborder operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB’s planning departments appreciate FEO’s high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in crossborder operations to the implementation of FEO.

Author(s):  
B Diedrichs

This work addresses crosswind stability exemplified for the German Railway Deutsche Bahn AG high-speed train ICE 2. The scope of the work is to describe the flow by means of computational fluid dynamics past the leading two cars of the train for yaw angles in the range 12.2–40.0°. Three track formations are utilized. The basic results are the set of independent aerodynamic coefficients for the lead and subsequent cars. The results are to some extent compared with experimental data for ICE 2 and also with data obtained for the Swedish high-speed train X2000. A numerical sensitivity study is undertaken to quantify differences in the above results dependent on the grid density and quality, turbulence model, numerical scheme, location of inlet and outlet boundaries, turbulence intensity and flow simulation software.


2019 ◽  
Vol 9 (2) ◽  
pp. 79-85
Author(s):  
Indah Noviasari ◽  
Andre Rusli ◽  
Seng Hansun

Students and scheduling are both essential parts in a higher educational institution. However, after schedules are arranged and students has agreed to them, there are some occasions that can occur beyond the control of the university or lecturer which require the courses to be cancelled and arranged for replacement course schedules. At Universitas Multimedia Nusantara, an agreement between lecturers and students manually every time to establish a replacement course. The agreement consists of a replacement date and time that will be registered to the division of BAAK UMN which then enter the new schedule to the system. In this study, Ant Colony Optimization algorithm is implemented for scheduling replacement courses to make it easier and less time consuming. The Ant Colony Optimization (ACO) algorithm is chosen because it is proven to be effective when implemented to many scheduling problems. Result shows that ACO could enhance the scheduling system in Universitas Multimedia Nusantara, which specifically tested on the Department of Informatics replacement course scheduling system. Furthermore, the newly built system has also been tested by several lecturers of Informatics UMN with a good level of perceived usefulness and perceived ease of use. Keywords—scheduling system, replacement course, Universitas Multimedia Nusantara, Ant Colony Optimization


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3609
Author(s):  
Mykola Sysyn ◽  
Michal Przybylowicz ◽  
Olga Nabochenko ◽  
Lei Kou

The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.


2021 ◽  
Vol 13 (6) ◽  
pp. 3184
Author(s):  
Ying-Hua Huang ◽  
Chen-Yu Sung ◽  
Wei Tong Chen ◽  
Shu-Shun Liu

The occupational injury death rate and mortality ratio owing to cerebrovascular and cardiovascular diseases in the construction industry are the highest among all industries in Taiwan. Reducing work stress and improving safety behavior is a must for reducing occupational disasters and diseases. Construction site management personnel’s safety behavior is an important paradigm for construction workers. This study explored the relationships among work stress, safety behavior, professional identity, social status perception, and social support for construction site management personnel by using structural equation modeling (SEM). The results indicated that low work stress can lead to favorable safety behavior. Greater company support, family support, and professional identity reduce work stress. Social status perception negatively influences work stress indirectly through the mediation of professional identity. The results revealed that construction site management personnel working within an exempt employee system (i.e., no overtime pay and compensatory leave) exhibited a significantly higher effort/reward ratio than those without this system. Gender, headquarter location, and site location also significantly influenced the on-site management personnel’s effort/reward ratio.


2011 ◽  
Vol 368-373 ◽  
pp. 3069-3073
Author(s):  
Sheng Hui Chen ◽  
Hui Min Li ◽  
Xin Ma

In order to improve construction site management, we make the architect’ position as the starting point for our research ,analyze the similarities and differences between the project manager and the architect and transform the traditional building construction management system from centralized system into flat -like system. Furthermore, we propose that the implementation of the system must be assisted with the construction of credit system and the establishment and implementation of personal practice insurance system.


2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


2018 ◽  
Vol 216 ◽  
pp. 01015
Author(s):  
Darya Provornaya ◽  
Sergey Glushkov ◽  
Leonid Solovyev

The paper considers the issues of vibration isolation of railway bridge units on high-speed lines and seismic protection using dynamic vibration dampers. The purpose of the research is to justify the efficiency of damping the dynamic vibrations of the bridge supports with seismic insulating support parts. The research methodology involves building mathematical models of the systems under consideration and their numerical analysis. The methods of structural mechanics and dynamics of structures were used for solving the assigned tasks. The basic mathematical dependences of the vibration system with two seismic masses were developed. The rolling stock was represented by concentrated forces moving along the span structure. As a result, a new scheme for dynamic damping of vibration of the bridge supports was proposed according to which the span structure used as the dynamic vibration damper has an additional fastening on a rigid abutment.


Sign in / Sign up

Export Citation Format

Share Document