scholarly journals Early Life Arsenic Exposure and Acute and Long-term Responses to Influenza A Infection in Mice

2013 ◽  
Vol 121 (10) ◽  
pp. 1187-1193 ◽  
Author(s):  
Kathryn A. Ramsey ◽  
Rachel E. Foong ◽  
Peter D. Sly ◽  
Alexander N. Larcombe ◽  
Graeme R. Zosky
2020 ◽  
Author(s):  
Yasmine Issah ◽  
Amruta Naik ◽  
Soon Y Tang ◽  
Kaitlyn Forrest ◽  
Thomas G Brooke ◽  
...  

AbstractAdverse early life exposures having a lasting negative impact on health. For examples, neonatal hyperoxia which is a risk factor for chronic lung disease of prematurity or bronchopulmonary dysplasia (BPD) confers susceptibility to respiratory infections like Influenza A (IAV) later in life. Given our previous findings that the circadian clock exerts a protective effect on injury from IAV, we asked if the long-term impact of neonatal hyperoxia includes disruption of circadian rhythms. We show here that neonatal hyperoxia abolishes the circadian clock mediated time of day protection from IAV, not through the regulation of viral burden, but through host tolerance pathways. We further discovered that that this dysregulation is mediated through the intrinsic clock in the lung, rather than through central or immune system clocks. Loss of circadian protein, Bmal1, in AT2 cells of the lung recapitulates the increased mortality, loss of temporal gating and other key features of hyperoxia-exposed animals. Taken together, our data suggest a novel role for the circadian clock in AT2 clock in mediating long-term effects of early life exposures to the lungs.Brief SummaryNeonatal hyperoxia abrogates the circadian protection from Influenza infection in recovered adults.


2013 ◽  
Vol 272 (2) ◽  
pp. 384-390 ◽  
Author(s):  
Shohreh F. Farzan ◽  
Margaret R. Karagas ◽  
Yu Chen

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yasmine Issah ◽  
Amruta Naik ◽  
Soon Y Tang ◽  
Kaitlyn Forrest ◽  
Thomas G Brooks ◽  
...  

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.


Author(s):  
Maria Fitzgerald ◽  
Michael W. Salter

The influence of development and sex on pain perception has long been recognized but only recently has it become clear that this is due to specific differences in underlying pain neurobiology. This chapter summarizes the evidence for mechanistic differences in male and female pain biology and for functional changes in pain pathways through infancy, adolescence, and adulthood. It describes how both developmental age and sex determine peripheral nociception, spinal and brainstem processing, brain networks, and neuroimmune pathways in pain. Finally, the chapter discusses emerging evidence for interactions between sex and development and the importance of sex in the short- and long-term effects of early life pain.


2015 ◽  
Vol 128 (7) ◽  
pp. 902-908 ◽  
Author(s):  
Zhi-Heng Xing ◽  
Xin Sun ◽  
Long Xu ◽  
Qi Wu ◽  
Li Li ◽  
...  

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A11-A12
Author(s):  
Carolyn Jones ◽  
Randall Olson ◽  
Alex Chau ◽  
Peyton Wickham ◽  
Ryan Leriche ◽  
...  

Abstract Introduction Glutamate concentrations in the cortex fluctuate with the sleep wake cycle in both rodents and humans. Altered glutamatergic signaling, as well as the early life onset of sleep disturbances have been implicated in neurodevelopmental disorders such as autism spectrum disorder. In order to study how sleep modulates glutamate activity in brain regions relevant to social behavior and development, we disrupted sleep in the socially monogamous prairie vole (Microtus ochrogaster) rodent species and quantified markers of glutamate neurotransmission within the prefrontal cortex, an area of the brain responsible for advanced cognition and complex social behaviors. Methods Male and female prairie voles were sleep disrupted using an orbital shaker to deliver automated gentle cage agitation at continuous intervals. Sleep was measured using EEG/EMG signals and paired with real time glutamate concentrations in the prefrontal cortex using an amperometric glutamate biosensor. This same method of sleep disruption was applied early in development (postnatal days 14–21) and the long term effects on brain development were quantified by examining glutamatergic synapses in adulthood. Results Consistent with previous research in rats, glutamate concentration in the prefrontal cortex increased during periods of wake in the prairie vole. Sleep disruption using the orbital shaker method resulted in brief cortical arousals and reduced time in REM sleep. When applied during development, early life sleep disruption resulted in long-term changes in both pre- and post-synaptic components of glutamatergic synapses in the prairie vole prefrontal cortex including increased density of immature spines. Conclusion In the prairie vole rodent model, sleep disruption on an orbital shaker produces a sleep, behavioral, and neurological phenotype that mirrors aspects of autism spectrum disorder including altered features of excitatory neurotransmission within the prefrontal cortex. Studies using this method of sleep disruption combined with real time biosensors for excitatory neurotransmitters will enhance our understanding of modifiable risk factors, such as sleep, that contribute to the altered development of glutamatergic synapses in the brain and their relationship to social behavior. Support (if any) NSF #1926818, VA CDA #IK2 BX002712, Portland VA Research Foundation, NIH NHLBI 5T32HL083808-10, VA Merit Review #I01BX001643


2000 ◽  
Vol 355 (1400) ◽  
pp. 1093-1101 ◽  
Author(s):  
P. C. Doherty ◽  
J. M. Riberdy ◽  
G. T. Belz

The recent development of techniques for the direct staining of peptide–specific CD8 + T cells has revolutionized the analysis of cell–mediated immunity (CMI) in virus infections. This approach has been used to quantify the acute and long–term consequences of infecting laboratory mice with the readily eliminated influenza A viruses (fluA) and a persistent γherpesvirus (γHV). It is now, for the first time, possible to work with real numbers in the analysis of CD8 + T CMI, and to define various characteristics of the responding lymphocytes both by direct flow cytometric analysis and by sorting for further in vitro manipulation. Relatively little has yet been done from the latter aspect, though we are rapidly accumulating a mass of numerical data. The acute, antigen–driven phases of the fluA and γHV–specific response look rather similar, but CD8 + T–cell numbers are maintained in the long term at a higher ‘set point’ in the persistent infection. Similarly, these ‘memory’ T cells continue to divide at a much greater rate in the γHV–infected mice. New insights have also been generated on the nature of the recall response following secondary challenge in both experimental systems, and the extent of protection conferred by large numbers of virus–specific CD8 + T cells has been determined. However, there are still many parameters that have received little attention, partly because they are difficult to measure. These include the rate of antigen–specific CD8 + T–cell loss, the extent of the lymphocyte ‘diaspora’ to other tissues, and the diversity of functional characteristics, turnover rates, clonal life spans and recirculation profiles. The basic question for immunologists remains how we reconcile the extraordinary plasticity of the immune system with the mechanisms that maintain a stable milieu interieur. This new capacity to quantify CD8 + T–cell responses in readily manipulated mouse models has obvious potential for illuminating homeostatic control, particularly if the experimental approaches to the problem are designed in the context of appropriate predictive models.


Sign in / Sign up

Export Citation Format

Share Document