scholarly journals Influence of Meteorological Parameters on Air Quality at Hashemite University, Jordan

2017 ◽  
Vol 12 (2) ◽  
pp. 211-221
Author(s):  
Sana’a Odata ◽  
Abu- Allabanb ◽  
Khitam Odibatb

Four threshold air pollutants (SO2, NO, NO2, and O3) in addition to meteorological parameters were monitored at the Campus of the Hashemite University (HU) for two years (1/1/2012 through 30/12/013). Correlations between air pollution and meteorological parameters were derived. The results showed that O3 has a positive correlation with air temperature, wind speed and wind direction, but has a negative correlation with the relative humidity (RH). SO2 was found to have a negative correlation with the RH and wind speed, but positive correlation with air temperature. NO has negative correlation with air temperature, RH, and wind speed. And finally, NO2 has a negative correlation with RH and wind speed, but it has positive correlation with air temperature. Justify the reasons in brief with recommendations to improve the air quality

Author(s):  
Wei Xue ◽  
Qingming Zhan ◽  
Qi Zhang ◽  
Zhonghua Wu

High air pollution levels have become a nationwide problem in China, but limited attention has been paid to prefecture-level cities. Furthermore, different time resolutions between air pollutant level data and meteorological parameters used in many previous studies can lead to biased results. Supported by synchronous measurements of air pollutants and meteorological parameters, including PM2.5, PM10, total suspended particles (TSP), CO, NO2, O3, SO2, temperature, relative humidity, wind speed and direction, at 16 urban sites in Xiangyang, China, from 1 March 2018 to 28 February 2019, this paper: (1) analyzes the overall air quality using an air quality index (AQI); (2) captures spatial dynamics of air pollutants with pollution point source data; (3) characterizes pollution variations at seasonal, day-of-week and diurnal timescales; (4) detects weekend effects and holiday (Chinese New Year and National Day holidays) effects from a statistical point of view; (5) establishes relationships between air pollutants and meteorological parameters. The principal results are as follows: (1) PM2.5 and PM10 act as primary pollutants all year round and O3 loses its primary pollutant position after November; (2) automobile manufacture contributes to more particulate pollutants while chemical plants produce more gaseous pollutants. TSP concentration is related to on-going construction and road sprinkler operations help alleviate it; (3) an unclear weekend effect for all air pollutants is confirmed; (4) celebration activities for the Chinese New Year bring distinctly increased concentrations of SO2 and thereby enhance secondary particulate pollutants; (5) relative humidity and wind speed, respectively, have strong negative correlations with coarse particles and fine particles. Temperature positively correlates with O3.


2019 ◽  
Vol 11 (14) ◽  
pp. 3957 ◽  
Author(s):  
Zhi Qiao ◽  
Feng Wu ◽  
Xinliang Xu ◽  
Jin Yang ◽  
Luo Liu

The air quality over China exhibits seasonal and regional variation, resulting from heterogeneity in industrialization, and is highly affected by variability in meteorological conditions. We performed the first national-scale exploration of the relationship between the Air Pollution Index (API) and multiple meteorological parameters in China, using partial correlation and hierarchical cluster analyses. Relative humidity, wind speed, and temperature were the dominant factors influencing air quality year-round, due to their significant effects on pollutant dispersion and/or transformation of pollutants. The response of the API to single or multiple meteorological factors varied among cities and seasons, and a regional clustering of response mechanisms was observed, particularly in winter. Clear north–south differentiation was detected in the mechanisms of API response to relative humidity and wind speed. These findings provide insight into the spatiotemporal variation in air quality sensitivity to meteorological conditions, which will be useful for implementing regional air pollution control strategies.


2013 ◽  
Vol 807-809 ◽  
pp. 20-23 ◽  
Author(s):  
Tao Sheng ◽  
Jian Wu Shi ◽  
Sen Lin Tian ◽  
Li Mei Bi ◽  
Hao Deng ◽  
...  

According to the information of air quality which published by the urban air quality real-time publishing platform, the concentration characteristics of PM10 and PM2.5 were studied in Kunming (KM), Changsha (CS), Hangzhou (HZ), Shanghai (SH), Harbin (HEB), Beijing (BJ), Wuhan (WH) and Guangzhou (GZ). The results show that the concentrations of PM10 and PM2.5 exceeded the Ambient Air Quality Standard (GB3095-2012) in varying degrees in March, 2013. The concentrations of PM10 in Wuhan is the highest, reached 164μg/m3, exceeded the standard by 9.3%; the concentrations of PM2.5 is much higher in Wuhan, Changsha and Beijing, the average concentrations were 96μg/m3, 103μg/m3 and 110μg/m3, exceeded the standard by 28.0%, 37.3% and 46.7% respectively. The correlation of PM10 with PM2.5 in most of these cities was good in March. The correlation analysis of pollutant with meteorological factor in Hangzhou, Shanghai, Beijing and Guangzhou was also studied, the results show that the concentrations of PM10 and PM2.5 are weakly positive correlation with temperature in the four cities, negative correlation with relative humidity without Beijing, and negative correlation with wind speed.


2021 ◽  
Author(s):  
Gabriela Iorga ◽  
George-Bogdan Burghelea

<p>Present research contributes to scientific knowledge concerning spatial and temporal variation of major air pollutants with high resolution at the country scale bringing statistical information on concentrations of NOx, O<sub>3</sub>, CO, SO<sub>2</sub> and particulate matter with an aerodynamic diameter below 10 μm (PM<sub>10</sub>) and below 2.5 μm (PM<sub>2.5</sub>) during the pandemic year 2020 using an observational data set from the Romanian National Air Quality Network in seven selected cities spread out over the country. These cities have different level of development, play regional roles, might have potential influence at European scale and they are expected to be impacted by different pollution sources. Among them, three cities (Bucharest, Brașov, Iași) appear frequently on the list of the European Commission with reference to the infringement procedure that the European Commission launched against Romania in the period 2007-2020 regarding air quality.</p><p>Air pollutant data was complemented with local meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, global solar radiation, wind speed and direction). Statistics of air pollutants provide us with an overview of air pollution in main Romanian cities.  Correlations between meteorological parameters and ambient pollutant levels were analyzed. Lowest air pollution levels were measured during the lockdown period in spring, as main traffic and non-essential activities were severely restricted. Among exceptions were the construction activities that were not interrupted. During 2020, some of selected cities experienced few pollution episodes which were due to dust transport from Sahara desert. However, in Bucharest metropolitan area, some cases with high pollution level were found correlated with local anthropogenic activity namely, waste incinerations. Air mass origins were investigated for 72 hours back by computing the air mass backward trajectories using the HYSPLIT model. Dust load and spatial distribution of the aerosol optical depth with BSC-DREAM8b v2.0 and NMBM/BSC-Dust models showed the area with dust particles transport during the dust events.</p><p>The obtained results are important for investigations of sources of air pollution and for modeling of air quality.</p><p><strong> </strong></p><p><strong>Acknowledgment:</strong></p><p>The research leading to these results has received funding from the NO Grants 2014-2021, under Project contract no. 31/2020, EEA-RO-NO-2019-0423 project. NOAA Air Resources Laboratory for HYSPLIT transport model, available at READY website https://www.ready.noaa.gov  and the Barcelona dust forecast center for BSC-DREAM8b and NMBM/BSC-Dust models, available at:  https://ess.bsc.es/bsc-dust-daily-forecast are also acknowledged. The data regarding ground-based air pollution and meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro.</p>


Author(s):  
Amtul Bari Tabinda ◽  
Saleha Munir ◽  
Abdullah Yasar ◽  
Asad Ilyas

Criteria air pollutants have their significance for causing health threats and damage to theenvironment. The study was conducted to assess the seasonal and temporal variations of criteria air pollutantsand evaluating the correlations of criteria air pollutants with meteorological parameters in the city ofLahore, Pakistan for a period of one year from April 2010 to March 2011. The concentrations of criteriaair pollutants were determined at fixed monitoring stations equipped with HORIBA analyzers. The annualaverage concentrations (µg/m3) of PM2.5, O3, SO2, CO and NOx (NO+NO2) for this study period were118.94±57.46, 46.0±24.2, 39.9±8.9, 1940±1300 and 130.9±81.0 (61.8±46.2+57.3±22.19), respectively.PM2.5, SO2, CO and NOx had maximum concentrations during winter whereas O3 had maximum concentrationduring summer. Minimum concentrations of PM2.5, SO2 and NOx were found during monsoon as comparedto other seasons due to rainfall which scavenged these pollutants. The O3 showed positive correlation withtemperature and solar radiation but negative correlation with wind speed. All other criteria air pollutantsshowed negative correlation with wind speed, temperature and solar radiation. A significant (P<0.01)correlation was found between NOx and CO (r = 0.779) which showed that NOx and CO arise from commonsource that could be the vehicular emission. PM2.5 was significantly correlated (P<0.01) with NOx (r = 0.524)and CO (r = 0.519), respectively. High traffic intensity and traffic jams were responsible for increased airpollutants level especially the PM2.5, NOx and CO.


2017 ◽  
Vol 68 (8) ◽  
pp. 1763-1767 ◽  
Author(s):  
Robert Szep ◽  
Reka Keresztes ◽  
Attila Korodi ◽  
Szende Tonk ◽  
Mihaela Emanuela Craciun

The atmospheric stability plays an important role in the accumulation of air pollutants and greatly influences their degradation, dispersion and deposition. These atmospheric qualities can be determined with various methods (Richardson number, Monin - Obukhov length, SRDT method) and the pollutant concentration increase demonstrates the atmospheric stability. In this study the cold periods were the most stable as well the PM10 and CO pollutants had high concentrations. Between these two pollutants the correlation is high because their sources are the same: transport and biomass burning. The study of hourly averages highlighted the importance of traffic intensity since the concentration variation follows the traffic intensity. An increase in the wind speed in the basin results in the pollutants concentrations decrease, the negative correlation with the temperature indicating the importance of the photochemical processes.


2018 ◽  
Vol 69 (8) ◽  
pp. 2005-2011
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gigel Paraschiv

In this paper we analyze the correlation between meteorological parameters (wind speed and direction, relative humidity, air temperature) and atmospheric pollutants in Bucharest during the cold period 26.02.2018-02.03.2018, which was based on the monitoring of the concentrations of nitrogen oxides, NO2, O3 and SO2 sulfur dioxide within 24 h and the occurrence of exceedances above the prescribed limit. It was found based on the results obtained that the wind direction influences not only the concentrations of pollutants but also the correlation between the pollutants. Traffic pollutants were at the highest concentration when the wind speed was low. We have found that the highest average concentration for NO2, NOx, NO, O3 occurred at 90% indicative humidity for vertical mixing of strong pollutants. Sulfur dioxide did not record exceeding over the limit standard in the analyzed period.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Ewa Bożena Łupikasza ◽  
Tadeusz Niedźwiedź

This paper studies surface air temperature inversions and their impact on air pollution under the background of meteorological conditions in southern Poland. The relationship of temperature gradients and air quality classes with weather conditions in the most urbanized and polluted part of Poland as represented by the Upper Silesia region (USR) within the administrative boundaries of the Górnośląsko-Zagłębiowska Metropolis (GZM) is presented. Based on probability analysis this study hierarchized the role of the selected weather elements in the development of surface-based temperature inversion (SBI) and air quality (AQ). The thresholds of weather elements for a rapid increase in the probability of oppressive air pollution episodes were distinguished. Although most SBI occurred in summer winter SBIs were of great importance. In that season a bad air quality occurred during >70% of strong inversions and >50% of moderate inversions. Air temperature more strongly triggered AQ than SBI development. Wind speed was critical for SBI and significant for AQ development. A low cloudiness favored SBI occurrence altered air quality in winter and spring during SBI and favored very bad AQ5 (>180 µg/m3) occurrence. The probability of high air pollution enhanced by SBI rapidly increased in winter when the air temperature dropped below −6 °C the wind speed decreased below 1.5 m/s and the sky was cloudless. Changes in the relative humidity did not induce rapid changes in the occurrence of bad AQ events during SBI


Author(s):  
J. B. Babaan ◽  
J. P. Ballori ◽  
A. M. Tamondong ◽  
R. V. Ramos ◽  
P. M. Ostrea

<p><strong>Abstract.</strong> As the unmanned aerial vehicle (UAV) technology has gained popularity over the years, it has been introduced for air quality monitoring. This study demonstrates the feasibility of customized UAV with mobile monitoring devices as an effective, flexible, and alternative means to collect three-dimensional air pollutant concentration data. This also shows the vertical distribution of PM concentration and the relationship between the PM<sub>2.5</sub> vertical distribution and the meteorological parameters within 500<span class="thinspace"></span>m altitude on a single flight in UP Diliman, Quezon City. Measurement and mapping of the vertical distribution of particulate matter (PM)<sub>2.5</sub> concentration is demonstrated in this research using integrated air quality sensors and customized Unmanned Aerial Vehicle. The flight covers an area with a radius of 80 meters, following a cylindrical path with 40-meter interval vertically. The PM<sub>2.5</sub> concentration values are analyzed relative to the meteorological parameters including air speed, pressure, temperature, and relative humidity up to a 500<span class="thinspace"></span>meter-flying height in a single flight in Barangay UP Campus, UP Diliman, Quezon City. The study shows that generally, the PM<sub>2.5</sub> concentration decreases as the height increases with an exception in the 200&amp;ndash;280<span class="thinspace"></span>m above ground height interval due to a sudden change of atmospheric conditions at the time of the flight. Using correlation and regression analysis, the statistics shows that PM<sub>2.5</sub> concentration has a positive relationship with temperature and a negative relationship with relative humidity and wind speed. As relative humidity and wind speed increases, PM<sub>2.5</sub> decreases, while as temperature increases, PM<sub>2.5</sub> also increases.</p>


2017 ◽  
pp. 25-32
Author(s):  
Anuttara Hongthong ◽  
Yanasinee Suma ◽  
Nittaya Pasukphun ◽  
Vivat Keawdounglek

This research aims to study air pollution dispersion in Chiang Rai Province, Thailand. The relationship between air pollutants, meteorology and population health were considered. The levels of air pollutants were used to establish a spatial and temporal analysis by Inverse Distance Weighted (IDW) interpolation from Geographic Information Systems (GIS), involved with occurrences of disease cases in the study area. The average monthly air pollution data were collected from Thailand’s Pollution Control Department and data on respiratory disease were collected from Chiang Rai Provincial Public Health Office during 2011 to 2014. The results indicated that monthly average PM10 concentrations started to rise from December to April. PM10 concentrations peaked during the hot season of every year, when open burning is prac-ticed. During this period, PM10 levels exceeded Thailand’s national ambient air quality standardsof 120 μg m-3. Accumulative influenza and pneumonia cases in Chiang Rai Province were very high in Chiang Rai city centre. The spatial temperature distribution map showed higher incidence of cases of influenza and pneumonia throughout the lower temperature area of Chiang Rai city centre. Influenza was affected by PM10, rainfall, relative humidity, and temperature, according to the following correlation ratios: 0.8217, 0.8842, 0.9375 and 0.8775, respectively. The incidence of pneumonia was affected by rainfall, relative humidity and temperature following the correlation ratios 0.7746, 0.7621 and 0.9684, respectively. Whereas PM10 was low associated with pneumonia as a significant ratio was 0.6079. Pneumonia incidence decreased when rainfall and temperature decreased, and increased when relative humidity increased.


Sign in / Sign up

Export Citation Format

Share Document