Changes of air pollutants’ concentrations in selected Romanian cities during the pandemic year 2020

Author(s):  
Gabriela Iorga ◽  
George-Bogdan Burghelea

<p>Present research contributes to scientific knowledge concerning spatial and temporal variation of major air pollutants with high resolution at the country scale bringing statistical information on concentrations of NOx, O<sub>3</sub>, CO, SO<sub>2</sub> and particulate matter with an aerodynamic diameter below 10 μm (PM<sub>10</sub>) and below 2.5 μm (PM<sub>2.5</sub>) during the pandemic year 2020 using an observational data set from the Romanian National Air Quality Network in seven selected cities spread out over the country. These cities have different level of development, play regional roles, might have potential influence at European scale and they are expected to be impacted by different pollution sources. Among them, three cities (Bucharest, Brașov, Iași) appear frequently on the list of the European Commission with reference to the infringement procedure that the European Commission launched against Romania in the period 2007-2020 regarding air quality.</p><p>Air pollutant data was complemented with local meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, global solar radiation, wind speed and direction). Statistics of air pollutants provide us with an overview of air pollution in main Romanian cities.  Correlations between meteorological parameters and ambient pollutant levels were analyzed. Lowest air pollution levels were measured during the lockdown period in spring, as main traffic and non-essential activities were severely restricted. Among exceptions were the construction activities that were not interrupted. During 2020, some of selected cities experienced few pollution episodes which were due to dust transport from Sahara desert. However, in Bucharest metropolitan area, some cases with high pollution level were found correlated with local anthropogenic activity namely, waste incinerations. Air mass origins were investigated for 72 hours back by computing the air mass backward trajectories using the HYSPLIT model. Dust load and spatial distribution of the aerosol optical depth with BSC-DREAM8b v2.0 and NMBM/BSC-Dust models showed the area with dust particles transport during the dust events.</p><p>The obtained results are important for investigations of sources of air pollution and for modeling of air quality.</p><p><strong> </strong></p><p><strong>Acknowledgment:</strong></p><p>The research leading to these results has received funding from the NO Grants 2014-2021, under Project contract no. 31/2020, EEA-RO-NO-2019-0423 project. NOAA Air Resources Laboratory for HYSPLIT transport model, available at READY website https://www.ready.noaa.gov  and the Barcelona dust forecast center for BSC-DREAM8b and NMBM/BSC-Dust models, available at:  https://ess.bsc.es/bsc-dust-daily-forecast are also acknowledged. The data regarding ground-based air pollution and meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro.</p>

2016 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala S. Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of three months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The ranges of hourly average concentrations were: PM10: 10.5–604.0 µg m−3, PM2.5: 6.1–272.2 µg m−3; BC: 0.3–30.0 µg m−3; CO: 125.0–1430.0 ppbv; and O3: 1.0–118.1 ppbv. These levels are comparable to other very heavily polluted sites throughout South Asia. The 24-h average PM2.5 and PM10 concentrations exceeded the WHO guideline very frequently (94 % and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants. The model was able to reproduce the variation in the pollutant concentrations well; however, estimated values were 1.5 to 5 times lower than the observed concentrations for CO and PM10 respectively. Regionally tagged CO tracers showed the majority of CO came from the upwind region of Ganges valley. The model was also used to examine the chemical composition of the aerosol mixture, indicating that organic carbon was the main constituent of fine mode PM2.5, followed by mineral dust. Given the high pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


Author(s):  
Janis Kleperis ◽  
Gunars Bajars ◽  
Ingrida Bremere ◽  
Martins Menniks ◽  
Arturs Viksna ◽  
...  

Air Quality in Riga and Its Improvement Options Air quality in the city of Riga is evaluated from direct monitoring results and from accounting registered air pollutants in the city. It is concluded that from all air polluting substances listed in the European Commission directives, only nitrogen dioxide NO2 and particulate matter PM10 exceed the limits. In assessing the projected measures to improve air quality in Riga, it can be concluded that the implementation of cleaner fuels and improvements in energy efficiency of household and industrial sectors will decrease particle pollution, but measures in the transport sector will also contribute to reducing air pollution from nitrogen oxides.


2020 ◽  
Author(s):  
Marius-Paul Corbu ◽  
Andreea Calcan ◽  
Ioana Vizireanu ◽  
Denisa Elena Moaca ◽  
Robert-Valentin Chiritescu ◽  
...  

<p>Although anthropogenic emissions of trace gases have decreased over the last decades in Europe, strong additional reductions are required to reach the goals of the Paris climate agreements. In addition, air pollution is an issue of great concern for the inhabitants of the metropolitan area of Bucharest, as the local air quality is often poor. The rapid development of the city, increased traffic volume from a mixed vehicle fleet (different technologies and fuels), and other factors are strong contributors of emissions of greenhouse gases and air pollutants in Bucharest.</p><p>The goal of this research was the assessment of CO, CO<sub>2</sub> and CH<sub>4</sub> concentrations in Bucharest, identification of potential emissions hotspots and their causes (anthropogenic or natural/biogenic, local or distant) and determination of the background values.</p><p>Measurements were performed in summer 2019 in four districts of Bucharest covering about two thirds of the metropolitan area during the Romanian Methane Emissions from Oil&gas (ROMEO) campaign with high resolution (1 sec). These data sets were complemented with satellite observations of CO and CH<sub>4</sub> from Copernicus Sentinel-5P at a resolution of 7 km<sup>2</sup>.</p><p>Hourly meteorological data, temperature, relative humidity, wind speed and direction, and atmospheric pressure were added to the air pollutant data set because synoptic conditions can strongly influence the levels of pollution. Air mass origins were investigated by computing backward air mass trajectories using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model for 72 hours back.</p><p>Points of high concentrations of CO, CO<sub>2</sub>, CH<sub>4</sub> near the surface were identified which are, most likely, linked to local anthropogenic activities in the nearby surroundings. We identified a variation of concentrations of CO from 0.01 to 101 ppm, of CO<sub>2</sub> from 388 to 6556 ppm, and of CH<sub>4</sub> from 1.89 to 246 ppm, while background levels are as follows: 0.071±0.042 ppm CO, 392.68±3.01 ppm CO<sub>2</sub>, and 1.93±0.016 ppm CH<sub>4</sub>.</p><p>Results of our study provide an up to date quantitative image of CO, CO<sub>2</sub>, CH<sub>4</sub> hotspots in the Bucharest area, which is important for modeling air quality and may also help to improve the relationships between column integrated air pollution data with in situ ground observations.</p><p><strong>Acknowledgement:</strong></p><p>This research is supported by ROMEO project, developed under UNEP’s financial support PCA/CCAC/UU/DTIE19-EN652. Partial financial support from UB198/Int project is also acknowledged.</p><p>The authors acknowledge the free use of tropospheric CO and CH<sub>4</sub> column data from TROPOMI (Sentinel-5P) sensor from https://s5phub.copernicus.eu and the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport model available at READY website https://www.ready.noaa.gov</p><p>Special thanks to all INCAS technical staff for their support in performing the campaigns.</p>


2017 ◽  
Vol 17 (18) ◽  
pp. 11041-11063 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala Siva Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of 3 months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The main objective of this work is to understand and document the level of air pollution, diurnal characteristics and influence of open burning on air quality in Lumbini. The hourly average concentrations during the entire measurement campaign ranged as follows: BC was 0.3–30.0 µg m−3, PM1 was 3.6–197.6 µg m−3, PM2. 5 was 6.1–272.2 µg m−3, PM10 was 10.5–604.0 µg m−3, O3 was 1.0–118.1 ppbv and CO was 125.0–1430.0 ppbv. These levels are comparable to other very heavily polluted sites in South Asia. Higher fraction of coarse-mode PM was found as compared to other nearby sites in the Indo-Gangetic Plain region. The ΔBC ∕ ΔCO ratio obtained in Lumbini indicated considerable contributions of emissions from both residential and transportation sectors. The 24 h average PM2. 5 and PM10 concentrations exceeded the WHO guideline very frequently (94 and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants to understand the pollutant transport pathways. The model estimated values were ∼ 1. 5 to 5 times lower than the observed concentrations for CO and PM10, respectively. Model-simulated regionally tagged CO tracers showed that the majority of CO came from the upwind region of Ganges Valley. Model performance needs significant improvement in simulating aerosols in the region. Given the high air pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


2021 ◽  
Vol 23 (06) ◽  
pp. 1-10
Author(s):  
Geeta Singh ◽  
◽  
Ayushi Jha ◽  
Rashmi Kumari ◽  
Vishal Kumar Singh ◽  
...  

The COVID-19 pandemics have affected every aspect of the human race and the world economy. The disease has been contaminated in almost every part of India. A threat for poor standards induced premature mortality from cardiovascular disease and respiratory diseases. Amongst the huge-reaching implications of the continuing COVID-19 outbreak, a significant enhancement in air quality was detected all around the globe after lockdowns enforced in several cities in India. The lockdown influenced the environment’s pollution level and improved air quality quickly due to very few human activities. The present work scientifically analyses the air pollutants (PM2.5, PM10, NO2, and SO2) with meteorological parameters in the golden quadrilateral cities. The purpose of this paper is to review the analysis of air quality of golden quadrilateral cities (Delhi, Kolkata, Chennai, and Mumbai). Data of air quality parameters are collectively taken from different locations from different regions of Delhi, Kolkata, Chennai, and Mumbai before lockdown and during the lockdown and compared the data of both periods. Comparison pre-lockdown and 2019 with respect to lockdown and 2020 respectively show a huge reduction in amounts of pollutants. Our objective is to find the implication of different lockdown measures on air quality levels in Delhi, Kolkata, Chennai, and Mumbai particularly this investigation is focused on PM2.5, PM10, NO2, SO2 which is directly transmitted by human action and formed through a chemical reaction in the atmosphere as well as quantify the short-range and long-range health impact.


2020 ◽  
Author(s):  
Tiberiu Hriscan ◽  
Sorin Burcea ◽  
Gabriela Iorga

<p>Air pollution and climate change represent today key environmental issues. They are highly linked each other through various ways. Pollutant emission reductions can improve both air quality and mitigate the climate changes. On the other hand, heavy precipitations and/or an increased frequency of their occurrence (climate change) might help to clean the air from pollutants. Despite of the scientific progress, the understanding of atmospheric pollutant wet removal in urban and peri-urban areas is still subject to a large uncertainty. Among factors of uncertainties are aerosol large variability, different sources, aerosol-cloud processing.</p><p>This study examines how the concentrations of particulate matter with an aerodynamic diameter below 10 μm (PM<sub>10</sub>) and below 2.5 μm (PM<sub>2.5</sub>) might be linked with precipitation characteristics using an observational data set for three years (2015-2017) in Bucharest metropolitan area. Particulate matter data and meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, global solar radiation, wind speed and direction) were extracted from the public available Romanian National Air Quality Database. Meteorology was complemented with radar products (images, reflectivity, echotops) from the C-band meteorological radar from National Meteorological Administration in Bucharest. Change of aerosol mass concentration during the evolution of the precipitation events was investigated. The aerosol scavenging coefficients were estimated and compared with those in scientific literature. Correlations between meteorological parameters and ambient PM<sub>10</sub> and PM<sub>2.5</sub> levels were analyzed. Connection of meteorological phenomena occurrence and air mass origin was investigated by computing air mass backward trajectories using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model for 72 hours back.</p><p>It was found that heavy precipitations have a strong influence on the atmospheric aerosol concentrations, determining an increased value of scavenging coefficient with up to one order of magnitude higher than in case of a moderate precipitation. Higher values of scavenging coefficient than in literature reveals a good capability of the convective precipitating systems to clear the atmosphere from aerosol and pollutant species.</p><p>The obtained results are important for modeling of air quality and for investigations of aerosol wet deposition processes.</p><p><strong>Acknowledgement:</strong></p><p>The authors thank the financial support from UB198/Int project and to National Meteorological Administration for access to the RADAR database. The data regarding ground-based air pollution and meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro, last accessed in December 2019.</p>


2017 ◽  
Vol 12 (2) ◽  
pp. 211-221
Author(s):  
Sana’a Odata ◽  
Abu- Allabanb ◽  
Khitam Odibatb

Four threshold air pollutants (SO2, NO, NO2, and O3) in addition to meteorological parameters were monitored at the Campus of the Hashemite University (HU) for two years (1/1/2012 through 30/12/013). Correlations between air pollution and meteorological parameters were derived. The results showed that O3 has a positive correlation with air temperature, wind speed and wind direction, but has a negative correlation with the relative humidity (RH). SO2 was found to have a negative correlation with the RH and wind speed, but positive correlation with air temperature. NO has negative correlation with air temperature, RH, and wind speed. And finally, NO2 has a negative correlation with RH and wind speed, but it has positive correlation with air temperature. Justify the reasons in brief with recommendations to improve the air quality


2020 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Tiberiu Hriscan ◽  
Silviu Chirita ◽  
Mihaela Burcea ◽  
Andreea Calcan ◽  
Marius Corbu ◽  
...  

This study examines how the mass concentrations of gaseous species (NO, NO2, NOx, O3, SO2, CO, C6H6) and particulate matter PM10, PM2.5 (particulate matter less than 10 µm and less than 2.5 μm) might be linked with precipitation characteristics using an observational data set for five years (2015–2019) in the Bucharest metropolitan area. Particulate matter data and meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, solar radiation, wind speed and direction) were extracted from the publicly available Romanian National Air Quality Database. Meteorology was complemented with radar products (images, reflectivity, echotops) from the C-band meteorological radar of the National Meteorological Administration in Bucharest. Change in aerosol mass concentration during the evolution of the precipitation events was investigated. The aerosol scavenging coefficients were estimated and compared with those in the scientific literature. Correlations between meteorological parameters and ambient pollutant levels were analyzed. The connection between meteorological phenomena occurrence and air mass origin was investigated by computing air mass backward trajectories for a 72-h period using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Results demonstrate the good capability of the convective precipitating systems to clear the atmosphere of fine aerosol and gaseous pollutant species. The obtained results are important for the modeling of air quality and for investigations of aerosol wet deposition processes.


2020 ◽  
Author(s):  
Zhao keming

<p>Using hourly air pollutants concentration from six environmental monitor stations, meteorological data and wind profile radar data in winter during 2013-2015, the influences of shallow foehn on diffusion conditions and air pollution concentration over Urumqi were analyzed. The results showed the occurrence frequency of shallow foehn was 57.3% in Urumqi in winter. The flow depth, base height and top height of shallow foehn were about 1500 m, 600 m and 2100 m, respectively. The maximum mixing layer depth, the inversion depth, the temperature difference between the top and bottom of inversion layer on foehn days were 200 m lower, 344m thicker and 4.4℃ higher than the corresponding values on non-foehn days, respectively. However, the differences of wind speed and inversion intensity between on foehn days and on non-foehn days were slight. Also, the frequency of each pollution level on foehn days was higher than on non-foehn days with extra frequency of 18% from level Ⅲ to level Ⅵ. Moreover, there was foehn existence on days with air pollution level Ⅵ. Except for O<sub>3</sub>, the other five air pollutant concentrations at each environmental station on foen days were all higher than on non-foehn days but with similar diurnal variation. The spatial distributions of six air pollutants on foehn days and non-foehn days were almost same. Overall, the air quality at south urban area was relative excellent than other areas.</p>


Author(s):  
Jovita PILECKA ◽  
Inga GRINFELDE ◽  
Inga STRAUPE ◽  
Oskars PURMALIS

The anthropogenic sources of air pollution such as transport, energetics, household heating and industry generate different trace element footprint. The urban planning is one of tool to reduce air pollution with trace elements. The aim of this study is to identify air pollution sources in Jelgava city using trace elements. The snow sampling were collected during January and February 2017. The January snow samples characterise average Jelgava city air pollution. However, February characterises intensive tourism impact on total air quality of Jelgava city. The snow samples were analysed using inductively coupled plasma spectrometer (ICP-OES). The data analysis consists of three stages. First, data verification and development of waste burning; burning of oil and fossil materials; wastewater treatment and utilisation of sewage sludge; transport; metal industry and fireworks typical pollution trace element data sets. Second, the cluster analysis of each data set, by developing three groups of pollution level for each pollution source. Third the results of clusters were analysed using GIS, and the areas with different air pollution risks were identified. The results show strong evidence of transport and household impact on air quality.


Sign in / Sign up

Export Citation Format

Share Document