scholarly journals Comparative Study of Water Quality Parameters along NH, SH and Link Road of Shivalik Foothills in Himachal Pradesh

2021 ◽  
Vol 16 (2) ◽  
pp. 540-550
Author(s):  
Anuja Bhardwaj ◽  
Rajeev Kumar Aggarwal ◽  
Satish Kumar Bhardwaj

A study was conducted to evaluate the spatial and seasonal variation in the quality of the surface water sources along national highway, state highway and link road. Physicochemical properties of water were estimated using water samples collected during the pre-monsoon, monsoon, and post-monsoon seasons in the year 2018 and 2019. The water quality parameters (pH, EC, Turbidity, TDS, BOD, COD, Cl-, NO3- and heavy metals) were calculated. The investigation revealed that pH (6.91-7.35), EC (0.17-0.29 dS m-1), TDS (140.12-175.54 mg l-1), Turbidity (2.34-3.87 NTU), BOD (2.25-2.89 mg l-1), COD (13.49-20.19 mg l-1), Cl- (14.36-30.15 mg l-1), NO3- (3.12-4.89 mg l-1) and various heavy metals were within permissible limits and varied significantly (p<0.05) on spatial variations. Maximum effects of vehicular emissions along the roadside water bodies were observed at NH followed by SH and minimum was noticed at LR. Among the seasons, maximum values of water quality parameters were observed during pre-monsoon season followed by monsoon and then post-monsoon.

2019 ◽  
Vol 28 (2) ◽  
pp. 147-158
Author(s):  
Mohammad Saiful Islam ◽  
Romana Afroz ◽  
Md Bodruddoza Mia

This work has been conducted to evaluate the water quality of the Buriganga river. In situ water quality parameters and water samples were collected from 10 locations in January 2016 and analyzed later in laboratory for water quality parameters such as pH, Eh, EC, TDS, cations (Na+, K+, Ca2+, Mg2, As3+), anions (Cl-, HCO3-, NO2-, NO3-, SO42-, F-, Br-, PO43-), heavy metals (Cr2+, Pb2+, Zn2+, Cd+2, Fe2+, Mn2+) to see whether or not the level of these parameters are within the permissible limits. The average values of pH, Eh, EC and temperature were 7.31, –214.9 mV, 928.9 μs/cm and 21.4°C, respectively; the average concentration of Na+, K+, Ca2+, Mg2+, and As3+ were 109.62, 13.38, 46.78, 13.98 and 0.018 mg/l, respectively, while the concentrations of Cl-,HCO3-, PO43-, SO42-, NO3-, NO2-, F and Br -were 79, 331.06, 2.22, 84.32, 0.0254, 0.058, 0.224 and 0.073 mg/l, respectively; and the concentration of heavy metals Pb2+, Zn2+, Fe2+ and Mn2+were 0.28, 0.053, 0.17 and 0.23 mg/l, respectively. The study indicates that most of the parameters are within the permissible limits set by Bangladesh water quality standard. The concentrations of K+, Mn2+, and Pb2+ were beyond the permissible limits meaning that that the water of Buriganga is not safe for drinking. The people living beside Buriganga river should be more cautious about using the polluted/contaminated river water. The concerned authorities should take urgent necessary steps to improve the degraded water quality of the river considering the ecological, environmental and economic implications associated with it. Dhaka Univ. J. Biol. Sci. 28(2): 147-158, 2019 (July)


Author(s):  
A Shivakrishna ◽  
Karankumar Ramteke ◽  
M Dhanya ◽  
R Charitha ◽  
Sahina Aktar ◽  
...  

Kolleru lake is one of Asia’s largest freshwater lakes, which has undergone tremendous changes in the water quality due to the sewage, pollution and development of aquaculture in its surrounding area. This study is undertaken to evaluate the present water quality scenario existing in Kolleru lake, which has been affected seriously due to the anthropogenic disturbances since long. Water samples were collected from ten sampling locations within the lake during pre and post-monsoon seasons of 2017-18. A total of 11 water quality parameters were analysed such as pH, temperature, EC, TDS, TSS, total alkalinity, total hardness, dissolved oxygen, salinity, COD, and nitrates. Parameters were estimated by using a standard protocol of APHA 2012. The spatial distribution maps of water quality were generated from pre and post monsoon data using Arc GIS software. Spatio-temporal variation of all parameters indicated that the water quality found was unsatisfactory within the Kolleru lake. The present study shows the better water quality in the post-monsoon season. The Inverse Distance Weighting (IDW) interpolation spatial mapping was also used for water quality mapping to observe the environmental variation for protecting the important freshwater ecosystem-Kolleru lake. The outcome of GIS analysis demonstrated the spatial visualization of the lodging evolution and geographical distribution trends of water quality parameters within the study area.


2017 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
MMM Hoque ◽  
PP Deb

This study was conducted to know the status of physicochemical water quality parameter and heavy metal concentration in the water of Buriganga river, adjoining to Dhaka city. Water samples were collected from five different points of Buriganga river and were analyzed to determine pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biological oxygen demand (BOD), chromium (Cr), lead (Pb), cadmium (Cd), copper (Cu) and manganese (Mn) content. Most of the measured water quality parameters and concentration of heavy metals were exceeded the standard level set by ECR and ADB. Among heavy metals concentration, level of chromium and cadmium were 4-5 times higher than the standard drinking level, these results indicate that surrounding industrial wastewater discharging from textile and tannery industries, which pollute the Buriganga river water. During the observation, at Hazaribagh station BOD level was found 32 times higher than drinking water standard level and 6 times higher than standard irrigation level, indicating Buriganga river water is extremely polluted by microorganism and is not suitable for household and irrigational use. Similarly, DO level at Buriganga river water was 5 times lower than the standard level, which indicates that Buriganga river water is extremely polluted and is unsuitable for aquatic life which are dependent on DO for their sustain. In the present study, the measured level of EC, chromium, cadmium and copper were found higher level as compare to the previous studies.J. Environ. Sci. & Natural Resources, 9(2): 97-104 2016


2014 ◽  
Vol 48 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Jingxi Li ◽  
Li Zheng ◽  
Xiaofei Yin ◽  
Junhui Chen ◽  
Bin Han ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 960-972
Author(s):  
M. F. Serder ◽  
M. S. Islam ◽  
M. R. Hasan ◽  
M. S. Yeasmin ◽  
M. G. Mostafa

Abstract The study aimed to assess the coastal surface water quality for irrigation purposes through the analysis of the water samples of some selected estuaries, rivers, and ponds. The analysis results showed that the mean value of typical water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), and chloride (Cl−) ions exceeded the permissible limit of the Department of Environment (DoE), Bangladesh 2010, and FAO, 1985 for the pre- and post-monsoon seasons. The Piper diagram indicated a Na-Cl water type, especially during the pre- and post-monsoon seasons. The water quality parameters in the areas showed a higher amount than the standard permissible limits, indicating that the quality is deteriorating. The water quality index values for domestic uses showed very poorly to unsuitable in most of the surface waters except pond water, especially during the pre- and post-monsoon periods. The surface water quality index for irrigation purpose usages was found to be high and/ or severely restricted (score: 0–55) during the pre- and post-monsoon seasons. The study observed that due to saline water intrusion, the water quality deterioration started from post-monsoon and reached its highest level during the pre-monsoon season, which gradually depreciates the water quality in coastal watersheds of Bangladesh.


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Author(s):  
Romana Rima ◽  
Abdullah Al Ryhan ◽  
Sony Ahmed ◽  
Rafiq Islam ◽  
Sharif Hossain Munshi ◽  
...  

The Meghna River is one of the most important rivers in Bangladesh, one of the three rivers, the Ganges delta, and the largest delta in the world in the Bay of Bengal. The water quality of Meghna has become a matter of concern due to serious levels of pollution. The present study was conducted to assess the surface water quality of upstream of the Meghna River using physic-chemical parameters in summer and winter season at five different points. Water quality was evaluated by laboratory analysis considering a total of six water quality parameters, pH, DO, BOD, COD, salinity and TDS and water samples were collected from five stations. The study indicates that some parameters exceed the permissible limit for drinking purpose, it may cause potential threat to the human, but the water of this river is not immediate threat to human or ecosystem.


2021 ◽  
Vol 6 (4) ◽  
pp. 40-49
Author(s):  
Nur Natasya Mohd Anuar ◽  
Nur Fatihah Fauzi ◽  
Huda Zuhrah Ab Halim ◽  
Nur Izzati Khairudin ◽  
Nurizatul Syarfinas Ahmad Bakhtiar ◽  
...  

Predictions of future events must be factored into decision-making. Predictions of water quality are critical to assist authorities in making operational, management, and strategic decisions to keep the quality of water supply monitored under specific criteria. Taking advantage of the good performance of long short-term memory (LSTM) deep neural networks in time-series prediction, the purpose of this paper is to develop and train a Long-Short Term Memory (LSTM) Neural Network to predict water quality parameters in the Selangor River. The primary goal of this study is to predict five (5) water quality parameters in the Selangor River, namely Biochemical Oxygen Demand (BOD), Ammonia Nitrogen (NH3-N), Chemical Oxygen Demand (COD), pH, and Dissolved Oxygen (DO), using secondary data from different monitoring stations along the river basin. The accuracy of this method was then measured using RMSE as the forecast measure. The results show that by using the Power of Hydrogen (pH), the dataset yielded the lowest RMSE value, with a minimum of 0.2106 at station 004 and a maximum of 1.2587 at station 001. The results of the study indicate that the predicted values of the model and the actual values were in good agreement and revealed the future developing trend of water quality parameters, showing the feasibility and effectiveness of using LSTM deep neural networks to predict the quality of water parameters.


2018 ◽  
Vol 18 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Sulata Kar ◽  
Papia Das ◽  
Uma Das ◽  
Maibam Bimola ◽  
Devashish Kar ◽  
...  

AbstractThe zooplankton assemblage of selected wetlands of Assam, India was assessed to deduce the structural variation in the context of water quality parameters. A two year study between 2012 and 2014 comprising of 530 samples from the five wetlands revealed the presence of 46 taxa, 26 Rotifera, 15 Cladocera, 4 Copepoda and 1 Ostracoda, in varying density. The rotifers dominated in terms of abundance (48 ind. cm−3) followed by the cladocerans (28 ind. cm−3) and the copepods (19 ind. cm−3) and showed significant (p <0.05) correlations with turbidity, alkalinity, hardness and phosphate contents of the water samples. The diversity and the richness of the zooplankton showed an increasing trend with the water temperature. Among the different taxa, Brachionus sp. was most abundant followed by Mesocyclops sp. while Beauchampiella sp. was represented in the least numbers. Application of the cluster analysis allowed the segregation of the different zooplankton based on the similarities of abundance in the samples. The water quality parameters like temperature, alkalinity, turbidity, magnesium and calcium were observed to be significant contributors in shaping the zooplankton community composition of the wetlands, revealed through the correlations and canonical correspondence analysis. As an extension, the information can be used in monitoring the quality of the freshwater habitats of the concerned and similar geographical regions, using the zooplankton as the major constituents. The variations in the abundance of cladoceran, copepod and rotifer zooplanktons can be used to understand the mechanisms that sustain the food webs of the aquatic community of the freshwater bodies.


2009 ◽  
Vol 44 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Chia-Wei Lin ◽  
Mei-Hui Li

Abstract One closed uncontrolled landfill, the Neihu garbage dump, and one active controlled landfill, the Sanzhuku sanitary landfill, were selected for investigation of their leachate characteristics and effects on adjacent river water quality before and after rainfall in northern Taiwan. A total of seven samplings were made during February and June 2007, with four samplings done after individual rainfall events on study sites. Water quality of runoff samples collected from the Sanzhuku sanitary landfill showed less pollution than the water quality of leachates collected from the Neihu garbage dump; however, some water quality levels of leachate samples collected from the Neihu garbage dump were relatively high, such as ammonia nitrogen (NH3-N), orthophosphate (PO43-) and biochemical oxygen demand (BOD5). At the uncontrolled dump, rainfall lead to dilution effects on river water NH3-N and PO43- concentrations, but not other water quality parameters. In contrast, the concentrations of bisphenol A (BPA) and nonylphenol were increased in both types of landfills after rainfall in the present study. Dilution effects of rainfall on most water quality parameters and toxicity tests were observed in the Neihu garbage dump leachates after rainfall, but not for the Sanzhuku Landfill runoff. The highest concentration of BPA measured in this study was 25.8 μg L-1 in the Sanzhuku sanitary landfill runoff after the heaviest rainfall event, during which 236 mm of rainfall accumulated over four days. The results of this study suggest that both uncontrolled and controlled landfill leachates can be an important potential pollution source of BPA to adjacent water bodies.


Sign in / Sign up

Export Citation Format

Share Document