scholarly journals Diurnal Variation of Ambient NH3 in Relation with Agricultural Activities and Meteorological Factors at a Rural Site in North India

2021 ◽  
Vol Special Issue (1) ◽  
pp. 17-31
Author(s):  
Sudesh Sudesh ◽  
U. C. Kulshrestha

Ammonia is a chemically active gas which accelerates particulate matter formation by combining with nitrate (NO3−) and sulphate (SO42-) in acid cloud droplets, thereby reducing air quality. Since pre-industrial times, NH3 emissions have more than doubled globally, owing to increase in agricultural activities and fertilizer usage. In this study, ambient NH3 monitoring was done during selected periods on event basis in summer season (kharif crop) at a rural site of Jhajjar district of Haryana. Collected gaseous NH3 samples in absorbing solution (1.4ml H2SO4 in 1 litre water) at a flow rate of 1 LPM were prepared with the indo phenol-blue method and analyzed using spectrophotometer at 630nm. Here, we present the day-night variation in ambient NH3 concentrations emitted from various agricultural activities such as synthetic fertilizers, animal manure, biological N-fixation, the crop residue in the field after harvest, biomass burning, etcin relation with meteorological parameters. Its emission was recorded as 1 to 45; 63 to 190; 98 to 187 and 56 to 249 µg m-3 during sowing, fertilizer addition, grain filling and biomass burning respectively.Concentration during the sowing period i.e. 1 to 45 µg m-3can be considered as baseline values.Concentration of ambient NH3 reached itsmaxima at night and minima duringmidday.NH3 concentration was observed to be high during night time which might be due to reduced dispersion as the atmospheric conditions are stable at night. Concentration of NH3 is majorly influenced by wind speed and wind direction & its dependence on these meteorological parameters suggested a local source influence indicating that the nearbyagricultural fields might be the major NH3contributors at the observational site.This study suggests that the knowledge of NH3 levels measured at various stages can help in implementing N efficient management system and emissions can be reduced by minimizing the Nitrogen (N) input during different stages. These measurements are also helpful in making fertilizer policy, and guidelines for farmers.

2018 ◽  
Vol 11 ◽  
pp. 117862211881020
Author(s):  
Eduardo Krüger ◽  
Patricia Drach ◽  
Rohinton Emmanuel

Daytime urban heat island effects can be weak compared to night time and even reversed (as in the case of cool islands, where urban locations display lower temperatures than at a rural site), mostly due to shading effects from buildings, vegetation, and other possible obstructions. The study of the relationship between the sky-view factor, an indicator of urban geometry in terms of sky openness, and urban heat island intensity generally focus on night time periods; only a few report on the daytime effect of the SVF. Such effect will also vary according to background atmospheric conditions of the period of measurements. This article is a commentary on a recent publication by the authors on a study of diurnal intra-urban temperature differences in a location with Koeppen’s Cfb climate.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

<p>Biomass burning including residential heating, agricultural fires, prescribed burning, and wildfires is a major source of gaseous and particulate pollutants in the atmosphere. Although, important changes in the size distributions and the chemical composition of the biomass burning aerosol during daytime chemistry have been observed, the corresponding changes at nighttime or in winter where photochemistry is slow, have received relatively little attention. In this study, we tested the hypothesis that nightime chemistry in biomass burning plumes can be rapid in urban areas using a dual smog chamber system.</p><p> </p><p>Ambient urban air during winter nighttime periods with high concentrations of ambient biomass burning organic aerosol is used as the starting point. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO<sub>3</sub> production and aging) while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20-70%. The oxygen to carbon ratio of the OA increased by 50% on average and the mass spectra of the produced OA was quite similar to that of the oxidized OA mass spectra reported during winter in urban areas. Good correlation was also observed with the produced mass spectra from nocturnal aging of laboratory biomass burning emissions showing the strong contribution of biomass burning emissions in the SOA formation during cold nights with high biomass burning activities. Concentrations of NO<sub>3</sub> radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.2-1.2 μg m<sup>-3</sup> of organic nitrate. These results strongly indicate that the OA in biomass burning plumes can evolve rapidly even during wintertime periods with low photochemical activity.</p>


2017 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Samuel Rémy ◽  
Florian Pappenberger ◽  
Fredrik Wetterhall

Abstract. The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass burning fire emission estimates from the Global Fire Assimilation System (GFAS). GFAS converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence where observed FRP from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an overestimation of fire duration, which in turn translates into an overestimation of emissions from fires. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.


2016 ◽  
Vol 16 (2) ◽  
pp. 1139-1160 ◽  
Author(s):  
L. Xu ◽  
L. R. Williams ◽  
D. E. Young ◽  
J. D. Allan ◽  
H. Coe ◽  
...  

Abstract. The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012149
Author(s):  
M Mendel

Abstract The most important meteorological data are:ambient temperature, precipitation quantity, air humidity, amount and type of clouds, atmospheric pressure, wind direction and speed, visibility, weather phenomena. These coefficients impact the effectiveness of various combat activities, especially those conducted in an open space. Knowledge of future weather conditions is essential for planning the location, calculating times, choice of means, and other aspects relevant to the upcoming operations. Taking weather conditions into account is vital, specifically when it comes to planning combat operations, where the accuracy in cooperation is of paramount importance. Rocket forces and artillery is a particular type of armed forces where weather conditions are critical. The effectiveness of artillery depends on ballistic calculation precision, and so knowledge of atmospheric conditions is fundamental. Atmospheric data are collected from sounding using a single probe attached to a balloon. It is generally known that particular meteorological parameters change in a smooth spatial manner depending on various coefficients. Information about the atmosphere collected by a single probe may be insufficient, due to the possibility of a balloon drifting away from the area of interest, and the calculations are based on data received from its probe. In this paper, I will suggest a method for preparing artillery use meteorologically, which takes into account the distribution of particular meteorological coefficients over a given area.


2021 ◽  
Vol Special Issue (1) ◽  
pp. 53-67
Author(s):  
Manisha Mishra ◽  
Umesh C Kulshrestha

The present study reports spatio-temporal distribution pattern of major gaseous (NH3 and NO2) and particulate water soluble total nitrogen (pWSTN) in the ambient air to explore the seasonal variation, major interactions and dominating sources. Considering the major hotspot of atmospheric reactive nitrogen (N) emission, three sites in Indo-Gangetic plain (IGP) were selected based on different local source parameters. Results have shown that gas phase reactive N contribute up to 90% of total analyzed reactive N, where NH3 imparted highest at all the three sites. Prayagraj, a fast growing urban site, has shown highest concentrations of NH3 (72.0 μg m−3), followed by Madhupur rural site (57.7 μg m−3) and Delhi, an urban megacity site (35.8 μg m−3). As compared to previous studies conducted at different sites of IGP, NH3 concentrations were reported to be the highest at the former two sites. However, unlike NH3, NO2 levels were recorded lower at Madhupur (3.1 μg m−3) and Prayagraj (9.4 μg m−3) sites as compared to Delhi (13.4 μg m−3). Similarly, pWSTN concentrations were in the order of Madhupur (6.6 μg m−3) < Prayagraj (10.0 μg m−3) < Delhi (10.1 μg m−3). A strong correlation of NO2 with pWSTN at urban sites has shown the crucial role of NO2 in the formation of nitrogenous aerosols. Significant spatial variation can be attributed to varying local emission sources ranging from microbial emission from improper sewage treatment and open waste dumping at Prayagraj, agricultural activities at Madhupur and vehicular exhausts at Delhi site.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2021 ◽  
Vol 21 (4) ◽  
pp. 3181-3192
Author(s):  
Linlin Liang ◽  
Guenter Engling ◽  
Chang Liu ◽  
Wanyun Xu ◽  
Xuyan Liu ◽  
...  

Abstract. Biomass burning activities are ubiquitous in China, especially in northern China, where there is a large rural population and winter heating custom. Biomass burning tracers (i.e., levoglucosan, mannosan and potassium (K+)), as well as other chemical components, were quantified at a rural site (Gucheng, GC) in northern China from 15 October to 30 November, during a transition heating season, when the field burning of agricultural residue was becoming intense. The measured daily average concentrations of levoglucosan, mannosan and K+ in PM2.5 (particulate matter with aerodynamic diameters less than 2.5 µm) during this study were 0.79 ± 0.75, 0.03 ± 0.03 and 1.52 ± 0.62 µg m−3, respectively. Carbonaceous components and biomass burning tracers showed higher levels during nighttime than daytime, while secondary inorganic ions were enhanced during daytime. An episode with high levels of biomass burning tracers was encountered at the end of October 2016, with high levoglucosan at 4.37 µg m−3. Based on the comparison of chemical components during different biomass burning pollution periods, it appeared that biomass combustion can obviously elevate carbonaceous component levels, whereas there was essentially no effect on secondary inorganic aerosols in the ambient air. Moreover, the levoglucosan / mannosan ratios during different biomass burning pollution periods remained at high values (in the range of 18.3–24.9); however, the levoglucosan / K+ ratio was significantly elevated during the intensive biomass burning pollution period (1.67) when air temperatures were decreasing, which was substantially higher than in other biomass burning periods (averaged at 0.47).


2011 ◽  
Vol 11 (21) ◽  
pp. 10803-10822 ◽  
Author(s):  
A. Ianniello ◽  
F. Spataro ◽  
G. Esposito ◽  
I. Allegrini ◽  
M. Hu ◽  
...  

Abstract. The atmospheric concentrations of gaseous HNO3, HCl and NH3 and their relative salts have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China), as part of CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region). In this study, annular denuder technique used with integration times of 2 and 24h to collect inorganic and soluble PM2.5 without interferences from gas–particle and particle–particle interactions. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. Fine particulate Cl−, NH4+ and SO42− exhibited distinct temporal variations, while fine particulate NO3− did not show much variation with respect to season. Daily mean concentrations of fine particulate NH4+ and SO42− were higher during summer (12.30 μg m−3 and 18.24 μg m−3, respectively) than during winter (6.51 μg m−3 and 7.50 μg m−3, respectively). Daily mean concentrations of fine particulate Cl− were higher during winter (2.94 μg m−3) than during summer (0.79 μg m−3), while fine particulate NO3− showed similar both in winter (8.38 μg m−3) and in summer (9.62 μg m−3) periods. The presence of large amounts of fine particulate NO3− even in summer are due to higher local and regional concentrations of NH3 in the atmosphere available to neutralize H2SO4 and HNO3, which is consistent with the observation that the measured particulate species were neutralized. The composition of fine particulate matter indicated the domination of (NH4)2SO4 during winter and summer periods. In addition, the high relative humidity conditions in summer period seemed to dissolve a significant fraction of HNO3 and NH3 enhancing fine particulate NO3− and NH4+ in the atmosphere. All measured particulate species showed diurnal similar patterns during the winter and summer periods with higher peaks in the early morning, especially in summer, when humid and stable atmospheric conditions occurred. These diurnal variations were affected by wind direction suggesting regional and local source influences. The fine particulate species were correlated with NOx and PM2.5, supporting the hypothesis that traffic may be also an important source of secondary particles.


Sign in / Sign up

Export Citation Format

Share Document