Hard-to-heal wound treated with Integra Flowable Wound Matrix: analysis and clinical observations

2021 ◽  
Vol 30 (8) ◽  
pp. 644-652
Author(s):  
Marcella Cammarota ◽  
Antonella D'Agostino ◽  
Ferdinando Campitiello ◽  
Manfredi Mancone ◽  
Giulia Ricci ◽  
...  

Skin healing defects severely impair the quality of life of millions of people and burden healthcare systems globally. The therapeutic approach to these pathologies still represents a challenge. Novel scaffolds, used as dermal substitutes, possibly represent a promising strategy in complex wound management. Integra Flowable Wound Matrix (IFWM) is composed of a lyophilised, micronised form of collagen/chondroitin sulphate matrix, already used in regenerative medicine and endorsed in the therapy of diabetic foot lesions. In this paper, IFWM was applied to a tunnelling hard-to-heal skin lesion in order to restore tissue integrity. Although the different phases of skin wound healing are well established, the molecular mechanism underpinning IFWM-induced tissue repair are almost unknown. Here, we report, for the first time, the comparative analysis of molecular, histological and clinical observations of the healing process of a hard-to-heal tunnelling skin wound. The therapeutic success of this clinical case allowed us to recommend the use of IFWM as a tissue substitute in this rare type of hard-to-heal wound in which the high inflammatory status hampered the natural healing process.

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw3963 ◽  
Author(s):  
S. O. Blacklow ◽  
J. Li ◽  
B. R. Freedman ◽  
M. Zeidi ◽  
C. Chen ◽  
...  

Inspired by embryonic wound closure, we present mechanically active dressings to accelerate wound healing. Conventional dressings passively aid healing by maintaining moisture at wound sites. Recent developments have focused on drug and cell delivery to drive a healing process, but these methods are often complicated by drug side effects, sophisticated fabrication, and high cost. Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They adhere strongly to the skin and actively contract wounds, in response to exposure to the skin temperature. In vitro and in vivo studies demonstrate their efficacy in accelerating and supporting skin wound healing. Finite element models validate and refine the wound contraction process enabled by these active adhesive dressings. This mechanobiological approach opens new avenues for wound management and may find broad utility in applications ranging from regenerative medicine to soft robotics.


2021 ◽  
Vol 7 (4) ◽  
pp. 247
Author(s):  
Sariya Mapoung ◽  
Sonthaya Umsumarng ◽  
Warathit Semmarath ◽  
Punnida Arjsri ◽  
Pilaiporn Thippraphan ◽  
...  

Auricularia auricula-judae, a nutrient-rich mushroom used in traditional medicine, is a macrofungi that exhibits various biological properties. In this study, we have reported on the mechanisms that promote the wound-healing effects of a water-soluble polysaccharide-rich extract obtained from A. auricula-judae (AAP). AAP contained high amounts of polysaccharides (349.83 ± 5.00 mg/g extract) with a molecular weight of 158 kDa. The main sugar composition of AAP includes mannose, galactose, and glucose. AAP displayed antioxidant activity in vitro and was able to abort UVB-induced intracellular ROS production in human fibroblasts in cellulo. AAP significantly promoted both fibroblast and keratinocyte proliferation, migration, and invasion, along with augmentation of the wound-healing process by increasing collagen synthesis and decreasing E-cadherin expression (All p < 0.05). Specifically, the AAP significantly accelerated the wound closure in a mice skin wound-healing model on day 9 (2.5%AAP, p = 0.031 vs. control) and day 12 (1% and 2.5%AAP with p = 0.009 and p < 0.001 vs. control, respectively). Overall, our results indicate that the wound-healing activities of AAP can be applied in an AAP-based product for wound management.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2021 ◽  
Vol 22 (8) ◽  
pp. 4121
Author(s):  
Mariana C. S. Vallejo ◽  
Nuno M. M. Moura ◽  
Ana T. P. C. Gomes ◽  
Ana S. M. Joaquinito ◽  
Maria Amparo F. Faustino ◽  
...  

Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes’ effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Roghaye Savari ◽  
Mohammad Shafiei ◽  
Hamid Galehdari ◽  
Mahnaz Kesmati

2014 ◽  
Vol 23 (7) ◽  
pp. 480-485 ◽  
Author(s):  
Hana Jin ◽  
Jihye Seo ◽  
So Young Eun ◽  
Young Nak Joo ◽  
Sang Won Park ◽  
...  

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Zhen-han Deng ◽  
Jian-jian Yin ◽  
Wei Luo ◽  
Ronak Naveenchandra Kotian ◽  
Shan-shan Gao ◽  
...  

Chronic nonhealing wounds pose a significant challenge to healthcare system because of its tremendous utilization of resources and time to heal. It has a well-deserved reputation for reducing the quality of life for those affected and represent a substantial economic burden to the healthcare system overall. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, there is paucity in data regarding its wound healing effects. Therefore, we investigated the effect of earthworm extract (EE) on skin wound healing process. The obtained data showed that EE has healing effects on local wound of mice. It decreased the wound healing time and reduced the ill-effects of inflammation as determined by macroscopic, histopathologic, hematologic, and immunohistochemistry parameters. The potential mechanism could be accelerated hydroxyproline and transforming growth factor-β secretion—thus increasing the synthesis of collagen, promoting blood capillary, and fibroblast proliferation. It could accelerate the removal of necrotic tissue and foreign bodies by speeding up the generation of interleukin-6, white blood cells, and platelets. It thus enhances immunity, reduces the risk of infection, and promotes wound healing. All in all, the obtained data demonstrated that EE improves quality of healing and could be used as a propitious wound healing agent.


Sign in / Sign up

Export Citation Format

Share Document