Finite element magnetic field response of an exponential conductivity ground profile

2015 ◽  
Vol 9 ◽  
pp. 2579-2594
Author(s):  
Priyanuch Tunnurak ◽  
Nairat Kanyamee ◽  
Suabsagun Yooyuanyong
Author(s):  
Igors Stroganovs ◽  
Andrejs Zviedris

Basic Statements of Research and Magnetic Field of Axial Excitation Inductor GeneratorIn this work the main features of axial excitation inductor generators are described. Mathematical simulation of a magnetic field is realized by using the finite element method. The objective of this work is to elucidate how single elements shape, geometric dimensions and magnetic saturation of magnetic system affect the main characteristics of the field (magnetic induction, magnetic flux linkage). The main directions of a magnetic system optimization are specified.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


2011 ◽  
Vol 378-379 ◽  
pp. 663-667 ◽  
Author(s):  
Toempong Phetchakul ◽  
Wittaya Luanatikomkul ◽  
Chana Leepattarapongpan ◽  
E. Chaowicharat ◽  
Putapon Pengpad ◽  
...  

This paper presents the simulation model of Dual Magnetodiode and Dual Schottky Magnetodiode using Sentaurus TCAD to simulate the virtual structure of magneto device and apply Hall Effect to measure magnetic field response of the device. Firstly, we use the program to simulate the magnetodiode with p-type semiconductor and aluminum anode and measure electrical properties and magnetic field sensitivity. Simulation results show that sensitivity of Dual Schottky magnetodiode is higher than that of Dual magnetodiode.


1995 ◽  
Vol 31 (3) ◽  
pp. 1416-1419 ◽  
Author(s):  
T. Nakata ◽  
N. Takahashi ◽  
K. Fujiwara ◽  
K. Muramatsu ◽  
H. Ohashi ◽  
...  

Author(s):  
Song-tong Han ◽  
Bo Zhang ◽  
Xiao-li Rong ◽  
Lei-xiang Bian ◽  
Guo-kai Zhang ◽  
...  

The ellipsoidal magnetization model has a wide range of application scenarios. For example, in aviation magnetic field prospecting, mineral prospecting, seabed prospecting, and UXO (unexploded ordnance) detection. However, because the existing ellipsoid magnetization formula is relatively complicated, the detection model is usually replaced by a dipole. Such a model increases the error probability and poses a significant challenge for subsequent imaging and pattern recognition. Based on the distribution of ellipsoid gravity potential and magnetic potential, the magnetic anomaly field distribution equation generated by the ellipsoid is deduced by changing the aspect ratio, making the ellipsoid equivalent to a sphere. The result of formula derivation shows that the two magnetic anomaly fields are consistent. This paper uses COMSOL finite element software to model UXO, ellipsoids, and spheres and analyzes magnetic anomalies. The conclusion shows that the ellipsoid model can completely replace the UXO model when the error range of 1nT is satisfied. Finally, we established two sets of ellipsoids and calculated the magnetic anomalous field distributions on different planes using deduction formulas and finite element software. We compared the experimental results and found that the relative error of the two sets of data was within [Formula: see text]‰. Error analysis found that the error distribution is standardized and conforms to the normal distribution. The above mathematical analysis and finite element simulation prove that the calculation method is simple and reliable and provides a magnetic field distribution equation for subsequent UXO inversion.


2007 ◽  
Vol 546-549 ◽  
pp. 1673-1676 ◽  
Author(s):  
Wei Jia Meng ◽  
Zhan Wen Huang ◽  
Yan Ju Liu ◽  
Xiao Rong Wu ◽  
Yi Sun

Magnetorheological (MR) fluids are suspensions of micron sized ferromagnetic particles dispersed in varying proportions of a variety of non-ferromagnetic fluids. MR fluids exhibit rapid, reversible and significant changes in their rheological (mechanical) properties while subjected to an external magnetic field. In this paper, a double-plate magneto-rheological fluid (MRF) clutch with controllable torque output have been designed. Electromagnetic finite element analysis is used to optimize the design of the clutch by using the commercial FEA software ANSYS.


Sign in / Sign up

Export Citation Format

Share Document