Prediction models for compressive strength of concrete with Alkali-activated binders

2016 ◽  
Vol 17 (4) ◽  
pp. 523-539
Author(s):  
Arkamitra Kar ◽  
Indrajit Ray ◽  
Avinash Unnikrishnan ◽  
Udaya B. Halabe
2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Author(s):  
Laura Sele ◽  
Diana Bajare ◽  
Girts Bumanis ◽  
Laura Dembovska

<p>According to research conducted in last 25 years, alkali activated binders have been considered as one of the most progressive alternative binders, which can effectively replace Portland cement. Production of alkali activated binders differs from the Portland cement production and is associated with lower CO2 emissions. The use of recycled industrial by-products and wastes is also possible, what corresponds to the future guidelines and principles of sustainable binder production in the world.<br />The aim of this study was to create innovative alkali activated binders by using secondary raw materials, which will be different from the ones described in the scientific literature – alkali activated binders with porous structure. Raw materials used for the binders were metakaolin containing waste, waste from aluminium scrap recycling factory and recycled lead-silicate glass; solid contents were activated with modified sodium silicate solution with an addition of sodium hydroxide.<br />The physical properties of alkali activated binders, such as density, water absorption, open and total porosity, were determined and flexural and compressive strength of hardened alkali-activated binders were tested at the age of 28 days. Durability was examined by sulphate resistance test, which was performed according to SIA 262/1, appendix D: applicability and relevance for use in practice. 40x40x160 mm prismatic specimens were used for expansion measurement and determination of compressive strength. <br />The open porosity of obtained materials was up to 45%, density from 380 to 1720 kg/m3, compressive strength up to 29,8 MPa, water absorption 6 – 114 wt.%. After analysing the results from the sulphate test it was concluded that glass additive reduced the alkali activated binder resistance to sulphate attack.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Palika Chopra ◽  
Rajendra Kumar Sharma ◽  
Maneek Kumar

An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs) and Genetic Programming (GP). The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training function Levenberg-Marquardt (LM) for the prediction of concrete compressive strength is the best prediction tool.


2021 ◽  
Author(s):  
Wei Chang ◽  
Wenzhong Zheng

Abstract The compressive strength of concrete confined with spiral stirrups was an important parameter to evaluate the load-bearing capacity of concrete columns. The confinement provided by spiral stirrups let concrete under the triaxial compression state and improved the compressive strength of concrete. However, the relationships between concrete and stirrups were complex and the existing prediction models for evaluating the compressive strength of confined concrete were various. In this paper, an adaptive neural-fazzy inferenxe system (ANFIS) model was developed to evaluate the compressive strength of concrete confined with stirrups. A set of 231 experimental results of concrete confined with spiral stirrups were collected from the previous studies to establish a reliable database. The investigated parameters included the aspect ratio of specimens, the diameter, spacing, yield strength, and volumetric ratio of stirrups, the ratio of longitudinal reinforcement, and the compressive strength of concrete. The results showed that the ANFIS model predicted the compressive strength of confined concrete accurately. By comparing with existing models, the proposed ANFIS model had high applicable and reliability. The effects of the investigated parameters on the compressive strength of concrete were analyzed based on the proposed ANFIS model.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 138 ◽  
Author(s):  
Xiaobin Wei ◽  
Feng Ming ◽  
Dongqing Li ◽  
Lei Chen ◽  
Yuhang Liu

Negative temperature curing is a very harmful factor for geopolymer mortar or concrete, which will decrease the strength and durability. The water in the geopolymer mixture may be frozen into ice, and the water content is a crucial factor. The purpose of this paper is to explore the influence of water content on the properties of alkali-activated binders mortar cured at −5 °C. Fly ash (FA) and ground granulated blast furnace slag (GGBFS) were used as binders. Three groups of experiments with different water content were carried out. The prepared samples were investigated through uniaxial compression strength test, Scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the determination of their compressive strength, microstructural features, phase, and composition. The results indicated that, the compressive strength of samples basically maintained 25.78 MPa–27.10 MPa at an age of 28 days; for 90 days, the values reached 33.4 MPa–34.04 MPa. The results showed that lower water content is beneficial to improving the early strength of mortar at −5 °C curing condition, while it has little impact on long-term strength. These results may provide references for the design and construction of geopolymer concrete in cold regions.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3053
Author(s):  
Danutė Vaičiukynienė ◽  
Dalia Nizevičienė ◽  
Agnė Mikelionienė ◽  
Algirdas Radzevičius

This study aims to investigate the effects of ammonium-bearing zeolitic waste (FCC) on alkali-activated biomass bottom ash (BBA). FCC was obtained from the oil-cracking process in petroleum plants. In this study, two types of production waste were used: biomass bottom ash and ammonium-bearing zeolitic waste. These binary alkali-activated FCC/BBA blends were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) methods. The compressive strength of the hardened samples was evaluated. The results show that the samples made from alkali-activated BBA biomass bottom ash had low (8.5 MPa) compressive strength, which could be explained with low reactive BBA and insufficient quantities of silicon and aluminum compounds. The reactivity of BBA was improved with incorporating zeolitic waste as an aluminosilicate material. This zeolitic waste was first used for ammonium sorption; then, it was incorporated in alkali-activated samples. Additional amounts of hydrated products formed, such as calcium silicate hydrate, calcium aluminum silicate hydrate and calcium sodium aluminum silicate hydrate. The silicon and aluminum compound, which varied in zeolitic waste, changed the mineral composition and microstructure of alkali-activated binder systems. NH4Cl, which was incorporated in the zeolitic waste, did not negatively affect the compressive strength of the alkali-activated BBA samples. This investigation proved that waste materials can be reused by producing alkali-activated binders.


2019 ◽  
Vol 36 (3) ◽  
pp. 876-898 ◽  
Author(s):  
Mohammadreza Mirzahosseini ◽  
Pengcheng Jiao ◽  
Kaveh Barri ◽  
Kyle A. Riding ◽  
Amir H. Alavi

PurposeRecycled waste glasses have been widely used in Portland cement and concrete as aggregate or supplementary cementitious material. Compressive strength is one of the most important properties of concrete containing waste glasses, providing information about the loading capacity, pozzolanic reaction and porosity of the mixture. This study aims to propose highly nonlinear models to predict the compressive strength of concrete containing finely ground glass particles.Design/methodology/approachA robust machine leaning method called genetic programming is used the build the compressive strength prediction models. The models are developed using a number of test results on 50-mm mortar cubes containing glass powder according to ASTM C109. Parametric and sensitivity analyses are conducted to evaluate the effect of the predictor variables on the compressive strength. Furthermore, a comparative study is performed to benchmark the proposed models against classical regression models.FindingsThe derived design equations accurately characterize the compressive strength of concrete with ground glass fillers and remarkably outperform the regression models. A key feature of the proposed models as compared to the previous studies is that they include the simultaneous effect of various parameters such as glass compositions, size distributions, curing age and isothermal temperatures. Parametric and sensitivity analyses indicate that compressive strength is very sensitive to the curing age, curing temperature and particle surface area.Originality/valueThis study presents accurate machine learning models for the prediction of one of the most important mechanical properties of cementitious mixtures modified by waste glass, i.e. compressive strength. In addition, it provides an insight into the effect of several parameters influencing the compressive strength. From a computing perspective, a robust machine learning technique that overcomes the shortcomings of existing soft computing methods is introduced.


2014 ◽  
Vol 600 ◽  
pp. 709-716 ◽  
Author(s):  
Mauro M. Tashima ◽  
Lourdes Soriano ◽  
Jorge L. Akasaki ◽  
Vinicius N. Castaldelli ◽  
J.M. Monzó ◽  
...  

Spent FCC catalyst is a waste from the petrochemical industry which has excellent pozzolanic properties, containing more than 90% silica and alumina. Its similarity to metakaolin creates interesting prospects for its use in the production of alkali-activated binders. In this study, the alkali activation of this residue, spent FCC catalyst, through mixtures with alkali hydroxide and silicate solutions (both sodium and potassium) has been carried out. The alkali cation had an important role in the nature of AA-FCC pastes: some differences in the mass loss in the thermogravimetric tests and in the X-ray mineral characterization were found. No significant differences in compressive strength were observed for mortars cured for 3 days in several conditions: room temperature and 65oC. Prepared AA-FCC mortars had a compressive strength of about 65-70 MPa. Microstructural studies showed that an amorphous, dense and compact microstructure was obtained, independent of the activating solution and curing condition.


Inorganics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 141 ◽  
Author(s):  
Kristine Vegere ◽  
Laura Vitola ◽  
Pauls P. Argalis ◽  
Diana Bajare ◽  
Andrey E. Krauklis

This work reports and describes a novel alkali-activated metakaolin as a potential binder material for the granulation of zeolites, which are widely used as CO2 adsorbents. The alkali-activated binders are zeolite-like materials, resulting in good material compatibility with zeolite-based adsorbents. A major problem during the granulation of zeolites is that their adsorption capacities decrease by about 15–20%, because typical binder materials (for example bentonite or kaolin clay) are inactive towards CO2 adsorption. A possible pathway to solve this problem is to introduce a novel binder that is also able to sorb CO2. In such a case, a binder plays a dual role, acting both as a binding material and as a sorbent. However, it is important that, alongside the adsorptive properties, a novel binder material must fulfil mechanical and morphological requirements. Thus, in this work, physical and mechanical properties of this novel binder for zeolite granulation for CO2 adsorption are studied. Alkali-activated metakaolin was found to be efficient and competitive as a binder material, when mechanical and physical properties were concerned. The compressive strengths of most of the obtained binders reported in this work are above the compressive strength threshold of 10 MPa. The future work on this novel binder will be conducted, which includes granulation-related details and the CO2 adsorptive properties of the novel binder material. Metakaolin was used as a precursor for alkali-activated binders. Binders were synthesized using varying molarity of a NaOH solution and at varying curing conditions. The final products were characterized using density measurements, compressive strength tests, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document