1H35 Development of a device for measuring the shrinkage force of the cell-containing collagen gel and elucidation of the effects of culture environment on the shrinkage force

2016 ◽  
Vol 2016.28 (0) ◽  
pp. _1H35-1_-_1H35-4_
Author(s):  
Azuma SUZUKI ◽  
Shogo MIYATA
Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


2018 ◽  
Vol 1 (2) ◽  
pp. 71
Author(s):  
Aan Eko Khusni Ubaidillah

The problems we face today live in a time of moral degradation and destruction. People feel proud if they can imitate the trend carried by the West; both in thought and lifestyle. Ironically, not a few generations of Muslims who terpedaya with the trend. They make Western values ​​as their standard of behavior and morals. Meanwhile, Islamic morality is increasingly felt strange and difficult to practice in the midst of society facing such problems plural and complex. The purpose of this study are: 1) To describe the steps Implementation of values ​​of Ethics, Moral and Morals in learning behavior in STIT Raden Wijaya Mojokerto. 2) To describe the supporting and inhibiting factors Implementation of Ethics, Morals and Morals values ​​in the behavior of learning in STIT Raden Wijaya Mojokerto This research type is field research research using qualitative approach. Data collection techniques include observation, interview, and documentation. Data analysis technique uses descriptive explorative, that is by describing state and phenomenon status. Based on the exposure of the analysis of data sources can be concluded that: 1) Steps Implementation of values ​​of Ethics, Morals and Morals in the behavior of learning in STIT Raden Wijaya Mojokerto is the first institution to make a mature planning, then applied with the pattern pembiasaan. 2) To describe the supporting and inhibiting factors Implementation of Ethics, Morals and Morals values ​​in learning behavior in STIT Raden Wijaya Mojokerto consists of internal factors (consisting of heredity, gender, physical character, personality, intelligence and talent) and external ( consisting of education, religion, culture, environment and socio-economic)


2005 ◽  
Vol 29 (3) ◽  
pp. 347-350
Author(s):  
M. Takeuchi ◽  
M. Sekino ◽  
N. Iriguchi ◽  
S. Ueno

2021 ◽  
Vol 22 (4) ◽  
pp. 2216
Author(s):  
Cheng-Chia Yu ◽  
Yi-Wen Liao ◽  
Pei-Ling Hsieh ◽  
Yu-Chao Chang

Oral submucous fibrosis (OSF) is known as a potentially malignant disorder, which may result from chemical irritation due to areca nuts (such as arecoline). Emerging evidence suggests that fibrogenesis and carcinogenesis are regulated by the interaction of long noncoding RNAs (lncRNAs) and microRNAs. Among these regulators, profibrotic lncRNA H19 has been found to be overexpressed in several fibrosis diseases. Here, we examined the expression of H19 in OSF specimens and its functional role in fibrotic buccal mucosal fibroblasts (fBMFs). Our results indicate that the aberrantly overexpressed H19 contributed to higher myofibroblast activities, such as collagen gel contractility and migration ability. We also demonstrated that H19 interacted with miR-29b, which suppressed the direct binding of miR-29b to the 3′-untranslated region of type I collagen (COL1A1). We showed that ectopic expression of miR-29b ameliorated various myofibroblast phenotypes and the expression of α-smooth muscle actin (α-SMA), COL1A1, and fibronectin (FN1) in fBMFs. In OSF tissues, we found that the expression of miR-29b was downregulated and there was a negative correlation between miR-29b and these fibrosis markers. Lastly, we demonstrate that arecoline stimulated the upregulation of H19 through the transforming growth factor (TGF)-β pathway. Altogether, this study suggests that increased TGF-β secretion following areca nut chewing may induce the upregulation of H19, which serves as a natural sponge for miR-29b and impedes its antifibrotic effects.


2013 ◽  
Vol 17 (4) ◽  
pp. 630-637 ◽  
Author(s):  
Hiroyuki Naitoh ◽  
Hiroshi Yamamoto ◽  
Satoshi Murata ◽  
Hisayuki Kobayashi ◽  
Katsunori Inoue ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2978
Author(s):  
Chie-Hong Wang ◽  
Chun-Hao Tsai ◽  
Tsung-Li Lin ◽  
Shih-Ping Liu

Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensive. To improve and simplify the differentiation strategy, we have explored the effects of interactions between growth factors (transforming growth factor β1 (Tgfb1) and colony stimulating factor 3 (Csf3), and culture environments (2D monolayer and 3D nanofiber scaffold) on chondrogenic differentiation. For this, we have examined cell morphologies, proliferation rates, viability, and gene expression profiles, and characterized the cartilaginous matrix formed in the chondrogenic cultures under different treatment regimens. Our data show that 3D cultures support higher proliferation rate than the 2D cultures. Tgfb1 promotes cell proliferation and viability in both types of culture, whereas Csf3 shows positive effects only in 3D cultures. Interestingly, our results indicate that the combined treatments of Tgfb1 and Csf3 do not affect cell proliferation and viability. The expression of cartilaginous matrix in different treatment groups indicates the presence of chondrocytes. We found that, at the end of differentiation stage 1, pluripotent markers were downregulated, while the mesodermal marker was upregulated. However, the expression of chondrogenic markers (col2a1 and aggrecan) was upregulated only in the 3D cultures. Here, we report an efficient, scalable, and convenient protocol for chondrogenic differentiation of iPS cells, and our data suggest that a 3D culture environment, combined with tgfb1 and csf3 treatment, promotes the chondrogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document