In vitro Hair Follicle Regeneration by Three-Dimensional Cell Culture Method Simulating in vivo cellular organization

Author(s):  
Takahiro SUMI ◽  
Aki SUGENO ◽  
Shogo MIYATA ◽  
Hanako YAZAWA ◽  
Hajime INOUE
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaowen Wu ◽  
Junxiang Su ◽  
Jizhen Wei ◽  
Nan Jiang ◽  
Xuejun Ge

Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.


2021 ◽  
Author(s):  
Jae Won Choi ◽  
Song-Hwa Bae ◽  
In Young Kim ◽  
Minjeong Kwak ◽  
Tae Geol Lee ◽  
...  

Nanomaterials are used in a variety of fields and toxicity assessment is paramount for their development and application. Although most toxicity assessments have been performed in 2D (2-Dimensional) cell culture, the inability to adequately replicate the in vivo environment and toxicity is a limitation. To overcome the limitation, a 3D (3-Dimensional) cell culture method has been developed to make an environment closer to an in vivo system. In this study, 20 nm SiO2 nanoparticles were dispersed in serum-containing (SC) and serum-free (SF) media to compare 2D cell culture and 3D cell culture toxicity. The cells were subjected to a 3D cell culture method in which HepG2, a human-derived liver cancer cell line, was mixed on a scaffold. We found that nanoparticles induced toxicity in 2D cell culture, but toxicity was not observed in 3D cell culture similar to in vivo environment. However, differences in toxicity were observed between the three types of scaffolds in the absence of serum as the number of cells decreased.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2015 ◽  
Vol 16 (12) ◽  
pp. 5517-5527 ◽  
Author(s):  
Delphine Antoni ◽  
Hélène Burckel ◽  
Elodie Josset ◽  
Georges Noel

2018 ◽  
Vol 150 ◽  
pp. 20-29 ◽  
Author(s):  
Robert Koban ◽  
Markus Neumann ◽  
Aila Daugs ◽  
Oliver Bloch ◽  
Andreas Nitsche ◽  
...  

Author(s):  
Loh Teng Hern Tan ◽  
Liang Ee Low ◽  
Siah Ying Tang ◽  
Wei Hsum Yap ◽  
Lay Hong Chuah ◽  
...  

Three-dimensional cell culture methods revolutionize the field of anticancer drug discovery, forming an important link-bridge between conventional in vitro and in vivo models and conferring significant clinical and biological relevant data. The current work presents an affordable yet reproducible method of generating homogenous 3D tumor spheroids. Also, a new open source software is adapted to perform an automated image analysis of 3D tumor spheroids and subsequently generate a list of morphological parameters of which could be utilized to determine the response of these spheroids toward treatments. Our data showed that this work could serve as a reliable 3D cell culture platform for preclinical cytotoxicity testing of natural products prior to the expensive and time-consuming animal models


1995 ◽  
Vol 37 (4) ◽  
pp. 291-296
Author(s):  
Claudio Tavares Sacchi ◽  
Ana Paula Silva de Lemos ◽  
Silvana Tadeu Casagrande ◽  
Alice Massumi Mori ◽  
Carmecy Lopes de Almeida

In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.


2019 ◽  
Vol 25 (34) ◽  
pp. 3599-3607 ◽  
Author(s):  
Adeeb Shehzad ◽  
Vijaya Ravinayagam ◽  
Hamad AlRumaih ◽  
Meneerah Aljafary ◽  
Dana Almohazey ◽  
...  

: The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 481
Author(s):  
Tarek Saydé ◽  
Omar El Hamoui ◽  
Bruno Alies ◽  
Karen Gaudin ◽  
Gaëtane Lespes ◽  
...  

Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system’s components.


Sign in / Sign up

Export Citation Format

Share Document