Three-Dimensional Numerical Analysis for an Erythrocyte Behavior near a Wall under an Inclined Centrifugal Force

Author(s):  
Suguru MIYAUCHI ◽  
Toshiyuki HAYASE ◽  
Arash Alizad BANAEI ◽  
Jean-Christophe LIOSEAU ◽  
Luca BRANDT
Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 13 (11) ◽  
pp. 6188
Author(s):  
Sungwan Son ◽  
Choon-Man Jang

For students, who spend most of their time in school classrooms, it is important to maintain indoor air quality (IAQ) to ensure a comfortable and healthy life. Recently, the ventilation performance for indoor air quality in elementary schools has emerged as an important social issue due to the increase in the number of days of continuous high concentrations of particulate matter. Three-dimensional numerical analysis has been introduced to evaluate the indoor airflow according to the installation location of return diffusers. Considering the possibility of the cross-infection of infectious diseases between students due to the direction of airflow in the classroom, the airflow angles of the average respiratory height range of elementary school students, between 1.0 and 1.5 m, are analyzed. Throughout the numerical analysis inside the classroom, it is found that the floor return system reduces the indoor horizontal airflow that causes cross-infection among students by 20% compared to the upper return systems. Air ventilation performance is also analyzed in detail using the results of numerical simulation, including streamlines, temperature and the age of air.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


Sign in / Sign up

Export Citation Format

Share Document