ICONE19-43590 Evaluation of supercritical CO_2 centrifugal compressor experimental data by CFD analysis

Author(s):  
Kazuhisa TAKAGI ◽  
Yasushi MUTO ◽  
Takao ISHIZUKA ◽  
Noriyuki WATANABE ◽  
Masanori ARITOMI
Author(s):  
Patrick J. Migliorini ◽  
Alexandrina Untaroiu ◽  
William C. Witt ◽  
Neal R. Morgan ◽  
Houston G. Wood

Annular seals are used in turbomachinery to reduce secondary flow between regions of high and low pressure. In a vibrating rotor system, the non-axisymmetric pressure field developed in the small clearance between the rotor and the seal generate reactionary forces that can affect the stability of the entire rotor system. Traditionally, two analyses have been used to study the fluid flow in seals, bulk-flow analysis and computational fluid dynamics (CFD). Bulk-flow methods are computational inexpensive, but solve simplified equations that rely on empirically derived coefficients and are moderately accurate. CFD analyses generally provide more accurate results than bulk-flow codes, but solution time can vary between days and weeks. For gas damper seals, these analyses have been developed with the assumption that the flow can be treated as isothermal. Some experimental studies show that the difference between the inlet and outlet temperature temperatures is less than 5% but initial CFD studies show that there can be a significant temperature change which can have an effect on the density field. Thus, a comprehensive analysis requires the solution of an energy equation. Recently, a new hybrid method that employs a CFD analysis for the base state, unperturbed flow and a bulk-flow analysis for the first order, perturbed flow has been developed. This method has shown to compare well with full CFD analysis and experimental data while being computationally efficient. In this study, the previously developed hybrid method is extended to include the effects of non-isothermal flow. The hybrid method with energy equation is then compared with the isothermal hybrid method and experimental data for several test cases of hole-pattern seals and the importance of the use of energy equation is studied.


2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


2018 ◽  
Vol 10 (2) ◽  
pp. 53-64
Author(s):  
KEIR Stewart ◽  
◽  
IVES Rob ◽  
HAMAD Faik ◽  
◽  
...  

Author(s):  
Kumud Ajmani ◽  
Hukam C. Mongia ◽  
Phil Lee

An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-2 design. The National Combustion Code (NCC) developed at NASA Glenn Research Center was used to perform reacting flow computations on an LDI-2 combustor configuration with thirteen injector elements arranged in four fuel stages. Reacting computations were performed with a consistent approach for mesh-optimization, liquid spray modeling and kinetics modeling. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were compared with two sets of experimental data at medium and high-power operating conditions, for two different pressure-drop conditions in the combustor. The NCC simulations predicted the combustor exit temperature to within 1–2% of experimental data. The accuracy of the EINOx predictions from the NCC simulations was within 10% to 30% of experimental data.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Daniel R. Grates ◽  
Peter Jeschke ◽  
Reinhard Niehuis

The subject of this paper is the investigation of unsteady flow inside a transonic centrifugal compressor stage with a pipe-diffuser by utilizing unsteady 3D Reynolds-averaged Navier–Stokes simulations (unsteady 3D URANS). The computational fluid dynamics (CFD) results obtained are compared with detailed experimental data gathered using various steady and unsteady measurement techniques. The basic phenomena and mechanisms of the complex and highly unsteady flow inside the compressor with a pipe-diffuser are presented and analyzed in detail.


Author(s):  
Arttu Reunanen ◽  
Harri Pitkänen ◽  
Timo Siikonen ◽  
Harri Heiska ◽  
Jaakko Larjola ◽  
...  

Two different volute geometries of a radial compressor at three different operating points have been analyzed using Computational Fluid Dynamics and detailed laboratory measurements. The performance of the volutes were compared using steady-state CFD-analysis, where the volute and the impeller with diffuser were modeled separately. In addition, a time dependent simulation of the complete compressor using the sliding mesh technique was performed for one operation point. Both volutes were manufactured and the overall performance of the compressor, the pressure distribution in the volute and the flow field in the volute inlet were measured with the respective volute geometries. The results obtained from steady, quasi-steady and time-accurate simulations are compared with experimental data.


Author(s):  
Hiroshi Miida ◽  
Kenta Tajima ◽  
Nobumichi Fujisawa ◽  
Yutaka Ohta

Abstract The unsteady diffuser stall behavior in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25–30% of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. Based on diffuser inlet velocity measurements, the diffuser stall fluctuations generated near both the shroud and hub sides, and the diffuser stall appeared at 180° and 240° from the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area, located at the stall cell center. The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded in the impeller rotational direction due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.


Author(s):  
Juan G. Gonza´lez ◽  
Bruno Pereiras ◽  
Francisco Castro ◽  
Miguel A. Rodri´guez

This work is focused on radial impulse turbines for an Oscillating Water Column (OWC) which is one of the alternatives to the Wells turbines traditionally installed in the OWC systems. All self-rectifying turbines work under special conditions due to the bi-directional flow caused by OWC. But a radial impulse turbine has another special point: it works alternatively as an inflow/outflow turbine, so that its behavior is not symmetrical as is expected in axial turbines for OWC (Wells and axial impulse turbines). The complete CFD analysis we have made of a radial impulse turbine is described. The model was created for a specific turbine but can be adapted for any self-rectifying turbine. We have studied the turbine by means of a one-dimensional study and a 3-D model solved with FLUENT® software, and the results were validated with experimental data extracted from the bibliography. This model allowed us to analyse both the classical dimensionless parameters and the flow pattern. Moreover, we have introduced a special definition for the reaction degree in order to analyse the process of the energy conversion.


Author(s):  
Chris Clarke ◽  
Russell Marechale ◽  
Abraham Engeda ◽  
Michael Cave

A steady state simulation procedure is proposed to capture localized flow reversal inside of a centrifugal compressor vaneless diffuser. The procedure was performed on 12 compressor stages of varying geometry for speed lines of 13,100, 19,240, and 21,870 r/min. The simulations were run for all points from choke to surge including the experimentally determined rotating stall onset point. The experimental data and geometry were provided by Solar Turbines Inc. San Diego, CA. It was found possible to capture localized flow reversal inside of a vaneless diffuser using a steady state simulation. The results showed that using a geometric parameter, comparing the diffuser width, b4, to the impeller blade pitch distance, dpitch, it could be determined whether or not a steady state simulation could capture localized flow reversal. For values of b4/dpitch beneath 0.152 flow reversal could not be captured. But, for values of b4/dpitch above 0.177 localized flow reversal was captured. For values between 0.152 and 0.177, no conclusions could be drawn. Where possible, experimental data were compared against the diffuser inlet and outlet numerical profiles and the meridional contour plot. These comparisons served to validate the approach used in this article. These validations showed that the procedure defined herein is accurate and trustworthy within a specific range of geometric and flow characteristics. There are two other conclusions. First, the b4/dpitch parameter helps to define the type of flow breakdown. For b4/dpitch below 0.152, the flow breaks down in the circumferential direction, but for values of b4/dpitch above 0.177, the flow breaks down in the span-wise direction. Second, the simulations were able to capture instances of localized flow reversal before rotating stall onset. This concludes that localized flow reversal is not the determining factor in rotating stall onset as has been suggested by other investigators.


Author(s):  
Carlo Cravero

A very detailed experimental case of a reversed profile in ground effect has been selected in the open literature and the available experimental data have been used as reference data for CFD analysis. The CFD approach has been used to predict the aerodynamic performance of the profile at different heights with respect to the ground: from the freestream case (no ground effect) to a low height where the stall on the suction surface limits the profile operation. Different CFD codes have been used starting with a well-known commercial code to different open source codes. The set of analysis with the commercial code has allowed the setup of the mesh to have the best accuracy from the simulations. The same grids have been used for the other codes in order to directly compare the solver properties without mesh influence. The results obtained by the codes are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document