The Influences of Spark Ignition on Combustion Properties at Lean Condition in SI Engine

2018 ◽  
Vol 2018.71 (0) ◽  
pp. E12
Author(s):  
Atsushi YAGI ◽  
Ko SHIMIZU ◽  
Mitsuhiro IKEDA ◽  
Yukihide NAGANO ◽  
Toshiaki KITAGAWA
2004 ◽  
Vol 26 (2) ◽  
pp. 83-92
Author(s):  
Bui Van Ga ◽  
Phung Xuan Tho ◽  
Nhan Hong Quang ◽  
Nguyen Huu Huong

A phenomenological model has been established to predict the velocity distribution of LPG (Liquefied Petroleum Gas) jet in combustion chamber of spark ignition (SI) engine. A shaped coefficient \(\beta\) governing the similarity of velocity profiles of LPG jets has been defined based on the theoretical and experimental analyses of turbulent diffusion jets. The results show that \(\beta\) is constant for steady jet but it is not the case for unsteady one. The model will enable us to calculate the velocity profiles of LPG jet after ending injection. This is necessary for research of stratified combustion in direct injection LPG SI engines.


2013 ◽  
Author(s):  
Olivier Laget ◽  
Laëtitia Muller ◽  
Karine Truffin ◽  
Julian Kashdan ◽  
Rajesh Kumar ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5223
Author(s):  
Guanting Li ◽  
Xiumin Yu ◽  
Ping Sun ◽  
Decheng Li

Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore, to investigate SHDI deeply, a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5, five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD), which was the main factor affecting the engine performances. With SHDI, since the HMD is manageable, the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105° crank angle (CA) before top dead center (BTDC), the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI), the NOX, CO and HC emissions with SHDI were reduced by 20%, 40% and 72% respectively.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Liu ◽  
Haocheng Ji ◽  
Minxiang Wei

Purpose The purpose of this paper is to investigate power performance, economy and hydrocarbons (HC)/carbon monoxide (CO) emissions of diesel fuel on a two-stoke direct injection (DI) spark ignition (SI) engine. Design/methodology/approach Experimental study was carried out on a two-stroke SI diesel-fuelled engine with air-assisted direct injection, whose power performance and HC/CO emissions characteristics under low-load conditions were analysed according to the effects of ignition energy, ignition advance angle (IAA), injection timing angle and excess-air-ratio. Findings The results indicate that, for the throttle position of 10%, a large IAA with adequate ignition energy effectively increases the power and decrease the HC emission. The optimal injection timing angle for power and fuel consumption is 60° crank angle (CA) before top dead centre (BTDC). Lean mixture improves the power performance with the HC/CO emissions greatly reduced. At the throttle position of 20%, the optimal IAA is 30°CA BTDC. The adequate ignition energy slightly improves the power output and greatly decreases HC/CO emissions. Advancing the injection timing improves the power and fuel consumption but should not exceed the exhaust port closing timing in case of scavenging losses. Burning stoichiometric mixture achieves maximum power, whereas burning lean mixture obviously reduces the fuel consumption and the HC/CO emissions. Practical implications Gasoline has a low flash point, a high-saturated vapour pressure and relatively high volatility, and it is a potential hazard near a naked flame at room temperature, which can create significant security risks for its storage, transport and use. The authors adopt a low volatility diesel fuel for all vehicles and equipment to minimise the number of different devices using various fuels and improve the potential military application safety. Originality/value Under low-load conditions, the two stroke port-injected SI engine performance of burning heavy fuels including diesel or kerosene was shown to be worse than those of gasoline. The authors have tried to use the DI method to improve the performance of the diesel-fuelled engine in starting and low-load conditions.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The operation of spark ignition (SI) engines on lean mixtures is attractive, in principle, since it can provide improved fuel economy, reduced tendency to knock, and extremely low NOx emissions. However, the associated flame propagation rates become degraded significantly and drop sharply as the operating mixture is made increasingly leaner. Consequently, there exist distinct operational lean mixture limits beyond which satisfactory engine performance cannot be maintained due to the resulting prolonged and unstable combustion processes. This paper presents experimental data obtained in a single cylinder, variable compression ratio, SI engine when operated in turn on methane, hydrogen, carbon monoxide, gasoline, iso-octane, and some of their binary mixtures. A quantitative approach for determining the operational limits of SI engines is proposed. The lean limits thus derived are compared and validated against the corresponding experimental results obtained using more traditional approaches. On this basis, the dependence of the values of the lean mixture operational limits on the composition of the fuel mixtures is investigated and discussed. The operational limit for throttled operation with methane as the fuel is also established.


Author(s):  
Rohit A. Zope ◽  
Javad Mohammadpour ◽  
Karolos M. Grigoriadis ◽  
Matthew Franchek

Precise control of the air-fuel ratio in a spark ignition (SI) engine is important to minimize emissions. The emission reduction strongly depends on the performance of the air-fuel ratio controller for the SI engine in conjunction with the Three Way Catalytic (TWC) converter. The TWC converter acts as a buffer to any variations occurring in the air-fuel ratio. It stores oxygen during a lean operation and releases the stored oxygen during a rich transient phase. The stored oxygen must be maintained close to the current storage capacity to yield maximum benefits from the TWC converter. Traditionally this is achieved using a simple PI control or a gain-scheduled PI control to address the variability in the operating conditions of the engine. This, however, does not guarantee closed-loop system stability and/or performance. In this work a model-based linear parameter varying (LPV) approach is used to design an H∞ controller. The design goal is to minimize the effect of disturbances on the air-fuel ratio and hence the relative storage level of oxygen in the TWC, over a defined operating range for the SI engine. The design method formulated in terms of Linear Matrix Inequalities (LMIs) leads to a convex optimization problem which can be efficiently solved using existing interior-point optimization algorithms. Simulations performed validate the proposed control design methodology.


2013 ◽  
Vol 17 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Jovan Doric ◽  
Ivan Klinar

A zero dimensional model has been used to investigate the combustion performance of a four cylinder petrol engine with unconventional piston motion. The main feature of this new spark ignition (SI) engine concept is the realization of quasi-constant volume (QCV) during combustion process. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of internal combustion (IC) engines. These advantages over standard engine are achieved through synthesis of unconventional piston mechanism. The numerical calculation was performed for several cases of different piston mechanism parameters, compression ratio and engine speed. Calculated efficiency and power diagrams are plotted and compared with performance of ordinary SI engine. The results show that combustion during quasi-constant volume has significant impact on improvement of efficiency. The main aim of this paper is to find a proper kinematics parameter of unconventional piston mechanism for most efficient heat addition in SI engines.


2014 ◽  
Vol 977 ◽  
pp. 47-50
Author(s):  
Mei Yu Shi ◽  
Rong Fu Zhu ◽  
Jiang Li ◽  
Yuan Tao Sun

The influence of butanol/gasoline blends at low temperature for-7°C, on cold-start emissions of a spark-ignition engine was tested. In cold-start period of the engine, the efficiency of the engine was expected to be poor, and the air/fuel mixture would be leaner for the more butanol added. The experimental results showed that the engine could be stable with B10 and B30 in cold-start, and HC and CO emissions reduced more significantly with more butanol added.


Author(s):  
Guillaume Brecq ◽  
Camal Rahmouni ◽  
Abdellilah Taouri ◽  
Mohand Tazerout ◽  
Olivier Le Corre

Experimental investigations on the knock rating of gaseous fuels were carried out on a single cylinder SI engine of Lister-Petter make. The Service Methane Number (SMN) of different gas compositions is measured and then compared to the standard Methane Number (MN), calculated by the AVL software. Effects of engine parameters, by mean of the Methane Number Requirement (MNR) are also highlighted. A linear correlation, between the SMN and the MN, has been obtained with a maximum absolute deviation lower than 2 MN units. A prediction correlation giving the MNR from engine parameters has finally been deduced from experimental data with a good accuracy (mean absolute deviation of 0.5 MNR unit).


Sign in / Sign up

Export Citation Format

Share Document