Development of finite element knee joint cruciate ligament model considering geometry and mechanical properties

2020 ◽  
Vol 2020 (0) ◽  
pp. J02208
Author(s):  
Kodai WATANABE ◽  
Ryo TAKEDA ◽  
Katsuhiko SASAKI ◽  
Shinya HONDA
Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2014 ◽  
Vol 601 ◽  
pp. 167-170
Author(s):  
Lucian Bogdan ◽  
Cristian Sorin Nes ◽  
Angelica Enkelhardt ◽  
Nicolae Faur ◽  
Carmen Sticlaru ◽  
...  

This paper presents a finite element analysis in order to determinate the stress distribution in an proposed model of the artificial cruciate ligament of the knee joint during the gait cycle.


2019 ◽  
Vol 252 ◽  
pp. 07007 ◽  
Author(s):  
Robert Karpiński ◽  
Łukasz Jaworski ◽  
Józef Jonak ◽  
Przemysław Krakowski

The article presents the results of a preliminary study on the structural analysis of the knee joint, considering changes in the mechanical properties of the articular cartilage of the joint. Studies have been made due to the need to determine the tension distribution occurring in the cartilage of the human knee. This distribution could be the starting point for designing custom made human knee prosthesis. Basic anatomy, biomechanical analysis of the knee joint and articular cartilage was introduced. Based on a series of computed tomography [CT] scans, the 3D model of human knee joint was reverse-engineered, processed and exported to CAD software. The static mechanical analysis of the knee joint model was conducted using the finite element method [FEM], in three different values of tibiofemoral angle and with varying mechanical properties of the cartilage tissue. Main conclusions of the study are: the capability to absorb loads by articular cartilage of the knee joint is preliminary determined as decreasing with increasing degenerations of the cartilage and with age of a patient. Without further information on changes of cartilage’s mechanical parameters in time it is hard to determine the nature of relation between mentioned capability and these parameters.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Feng Xie ◽  
Liu Yang ◽  
Lin Guo ◽  
Zhi-jun Wang ◽  
Gang Dai

To establish a finite element model that reflects the geometric characteristics of the normal anterior cruciate ligament (ACL), explore the approaches to model knee joint ligaments and analyze the mechanics of the model. A healthy knee joint specimen was subjected to three-dimensional laser scanning, and then a three-dimensional finite element model for the normal ACL was established using three-dimensional finite element software. Based on the model, the loads of the ACL were simulated to analyze the stress-strain relationship and stress distribution of the ACL. Using the ABAQUS software, a three-dimensional finite element model was established. The whole model contained 22,125 nodes and 46,411 units. In terms of geometric similarity and mesh precision, this model was superior to previous finite element models for the ACL. Through the introduction of material properties, boundary conditions, and loads, finite elements were analyzed and computed successfully. The relationship between overall nodal forces and the displacement of the ACL under anterior loads of the tibia was determined. In addition, the nephogram of the ACL stress spatial distribution was obtained. A vivid, three-dimensional model of the knee joint was established rapidly by using reverse engineering technology and laser scanning. The three-dimensional finite element method can be used for the ACL biomechanics research. The method accurately simulated the ACL stress distribution with the tibia under anterior loads, and the computational results were of clinical significance.


2014 ◽  
Vol 2014 (1) ◽  
pp. 21 ◽  
Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
Andreas-Marios Tsainis

Author(s):  
Yuhua Song ◽  
Richard E. Debski ◽  
Jorge Gil ◽  
Savio L.-Y. Woo

A 3-D finite element (FE) model of the knee is needed to more accurately analyze the kinematics of a knee joint as well as the function of various soft tissues such as ligaments. The data obtained can provide a better understanding of mechanisms of injury and offer valuable information for ligament reconstruction and rehabilitation protocols. The objective of this study was to develop a 3-D non-linear FE model of a human knee and determine its kinematics and the force and stress distributions within the anterior cruciate ligament (ACL) in response to anterior tibial loads at full extension. This model was validated by comparing the computed results to data obtained experimentally by a Robotic/UFS testing system [1].


2020 ◽  
Vol 20 (07) ◽  
pp. 2050047
Author(s):  
NUR AFIKAH ZAINAL ABIDIN ◽  
MOHAMMED RAFIQ ABDUL KADIR ◽  
MUHAMMAD HANIF RAMLEE

Complication rates of anterior cruciate ligament reconstruction (ACL-R) were reported to be around 15%. Although it is a very common arthroscopic surgery with good outcomes, breakage and migration of fixators are still possible to occur due to stability issue. One of the factors that affects the mechanical stability of fixators is its length. Therefore, the aim of this paper is to analyze the biomechanical effects of different lengths of fixators (cross-pin technique) towards the stabilities of the knee joint after ACL-R. Finite element analyses of knee joint with DST grafts and fixators were carried out. Mimics and 3-Matic were used in the development of knee joint models, while the grafts and fixators were designed by using SolidWorks software. All models were remeshed in the 3-Matic and numerical analysis was performed via MSC.Marc Mentat software. A 100 N anterior tibial load was applied onto the tibia to simulate the anterior drawer test after the surgery and proximal femur was fixed at all degrees of freedom. Based on the findings, cross-pin with 40[Formula: see text]mm in length provided the most favorable option for better treatment of ACL-R, where it could promote osseointegration and preventing fracture.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Mikko S. Venäläinen ◽  
Mika E. Mononen ◽  
Jukka S. Jurvelin ◽  
Juha Töyräs ◽  
Tuomas Virén ◽  
...  

Mechanical behavior of bone is determined by the structure and intrinsic, local material properties of the tissue. However, previously presented knee joint models for evaluation of stresses and strains in joints generally consider bones as rigid bodies or linearly elastic solid materials. The aim of this study was to estimate how different structural and mechanical properties of bone affect the mechanical response of articular cartilage within a knee joint. Based on a cadaver knee joint, a two-dimensional (2D) finite element (FE) model of a knee joint including bone, cartilage, and meniscus geometries was constructed. Six different computational models with varying properties for cortical, trabecular, and subchondral bone were created, while the biphasic fibril-reinforced properties of cartilage and menisci were kept unaltered. The simplest model included rigid bones, while the most complex model included specific mechanical properties for different bone structures and anatomically accurate trabecular structure. Models with different porosities of trabecular bone were also constructed. All models were exposed to axial loading of 1.9 times body weight within 0.2 s (mimicking typical maximum knee joint forces during gait) while free varus–valgus rotation was allowed and all other rotations and translations were fixed. As compared to results obtained with the rigid bone model, stresses, strains, and pore pressures observed in cartilage decreased depending on the implemented properties of trabecular bone. Greatest changes in these parameters (up to −51% in maximum principal stresses) were observed when the lowest modulus for trabecular bone (measured at the structural level) was used. By increasing the trabecular bone porosity, stresses and strains were reduced substantially in the lateral tibial cartilage, while they remained relatively constant in the medial tibial plateau. The present results highlight the importance of long bones, in particular, their mechanical properties and porosity, in altering and redistributing forces transmitted through the knee joint.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xia Huang

In order to solve the problem of sports injury modeling of the anterior cruciate ligament, a method based on the intelligent finite element algorithm is proposed. Considering the transverse isotropy of the ligament, this paper constructs a 3D finite element model of the knee joint based on medical image data. The same ligament constitutive equation was used to fit the parameters of stress-strain mechanical experimental curves of three different anterior cruciate ligaments, and the effects of different anterior cruciate ligament mechanical parameters on kinematics and biomechanical properties of the knee joint were compared. The experimental results show that, in models 1, 2, and 3, the maximum stress values appear in the posterolateral of the femoral attachment area of the ligament, which are 16.24 MPa, 16.36 MPa, and 22.05 MPa, respectively. However, the stress values at the tibial attachment area are 9.80, 13.8, and 13.93 MPa, respectively, and the stress values at the anterolateral part of the middle ligament are 6.36, 11.89, and 12.26 MPa, respectively, which are all smaller than those at the femoral attachment area, which also quantitatively explains the clinical phenomenon that ACL fracture often occurs in the femoral attachment area in practice. Thus, the three-dimensional finite element model of the knee joint highly simulates the structure and material properties of the knee joint. This method proves that the intelligent finite element algorithm can effectively solve the modeling problem of sports injury of the anterior cruciate ligament.


Sign in / Sign up

Export Citation Format

Share Document