A10 Design and Test Results of Active Magnetic Bearing Control System for High-speed Turbo Compressor

Author(s):  
Naohiko TAKAHASHI ◽  
Haruo MIURA ◽  
Yasuo FUKUSHIMA
2009 ◽  
Vol 147-149 ◽  
pp. 302-307 ◽  
Author(s):  
Arkadiusz Mystkowski ◽  
Zdzisław Gosiewski

An optimal robust vibration control of a rotor supported magnetically over a wide angular speed range is presented in the paper. The laboratory stand with the high speed rotor (max. 24000 rpm) was designed. The wide bandwidth controller with required gain, which is necessary to stabilize the structurally unstable and active magnetic bearing system was computed. For controller design, the weighting functions putted on the input and output signals were chosen. For control design, the dynamics of the rotor and uncertain parameters were considered. The optimized control system by minimization of the H norm putted on transient process of the system was presented. The robust controller was designed with considered asymmetrically magnetic bearings, signal limits and power amplifiers dynamic. The success of the robust control is demonstrated through computer simulations and experimental results. Matlab-Simulink was used for the numerical simulation. The experimental results show the effectiveness of the control system as good vibrations reducing and robustness of the designed controller in all dynamic states.


2006 ◽  
Vol 129 (2) ◽  
pp. 522-529 ◽  
Author(s):  
Lawrence Hawkins ◽  
Alexei Filatov ◽  
Shamim Imani ◽  
Darren Prosser

A cryogenic gas expander system that incorporates a high-performance, high-speed permanent magnet, direct-drive generator and low loss magnetic bearings is described. Flow loop testing to 30,000rpm was completed at the system manufacturer’s facility in January 2005, and field installation is scheduled for October 2005. As part of the system testing, the rotor was dropped onto the backup bearings multiple times at an intermediate speed and at 30,000rpm. Orbit and time-history data from a full speed drop and spin down are presented and discussed in detail. A transient, nonlinear rotordynamic analysis simulation model was developed for the machine to provide insight into the dynamic behavior. The model includes the dead band clearance, the flexible backup bearing support, and hard stop. Model predictions are discussed relative to the test data.


Author(s):  
Sergei Loginov ◽  
Yuri Zhuravlyov ◽  
Yulia Domracheva ◽  
Dmitriy Fedorov

Active magnetic bearing is the electromechanical device allowing to suspend the rotor of the electric machine. Friction is eliminated and high speed of rotation can be achieved. However, the parameters of the electromechanical system may change during operation. Adaptive control system allows to maintain stability under varying parameters.


Author(s):  
Bangcheng Han ◽  
Shiqiang Zheng

This paper describes in detail the design, construction, and testing of an active magnetic bearing (AMB) system for high-speed permanent magnet (PM) brushless DC motor (BLDCM) application. A back-to-back (BTB) test setup which consists of two BLDCMs connected by a high-speed flexible coupling is designed and built: the first one acts as the motor and the other one acts as the generator with resistive load. The dynamic model of the rigid rotor supported by AMBs, and its electromagnetic and feedback control design aspects are also provided. Mechanical design aspects are rotor assembly, radial AMB (RAMB), and thrust AMB (TAMB). Finally, full-loaded test results of the AMBs are given using the BTB experimental test setup that adopts two 100 kW electric machines supported by AMBs.


Author(s):  
Sergei Loginov ◽  
Dmitriy Fedorov ◽  
Igor Savrayev ◽  
Igor Plokhov ◽  
Andrey Hitrov ◽  
...  

Active magnetic bearings are increasingly used in various fields of industry. The absence of mechanical contact makes it possible to use them in ultra-high-speed electric drives. The main trend of active magnetic bearings development is the improvement of the control system. The main problem of the control system is the displacement sensor (most of them has low accuracy and large interference). The sensor must have the following properties: simple in realization, high linearity of the characteristic, high sensitivity and noise immunity, high reliability. At the present time there is no sensor that satisfies all these conditions. Most manufacturers use various kinds of filters to get an accurate position signal. This increases the response time of the control system. Thus, problem of designing and modeling the position sensor, considered in the article is topical.


2013 ◽  
Vol 198 ◽  
pp. 451-456 ◽  
Author(s):  
Rafał P. Jastrzębski ◽  
Alexander Smirnov ◽  
Katja Hynynen ◽  
Janne Nerg ◽  
Jussi Sopanen ◽  
...  

This paper presents the practical results of the design analysis, commissioning, identification, sensor calibration, and tuning of an active magnetic bearing (AMB) control system for a laboratory gas blower. The presented step-by-step procedures, including modeling and disturbance analysis for different design choices, are necessary to reach the full potential of the prototype in research and industrial applications. The key results include estimation of radial and axial disturbance forces caused by the permanent magnet (PM) rotor and a discussion on differences between the unbalance forces resulting from the PM motor and the induction motor in the AMB rotor system.


Author(s):  
Helmut Habermann ◽  
Maurice Brunet

The active magnetic bearing is based on the use of forces created by a magnetic field to levitate the rotor without mechanical contact between the stationary and moving parts. A ferromagnetic ring fixed on the rotor “floats” in the magnetic fields generated by the electromagnets, which are mounted as two sets of opposing pairs. The current is transmitted to the electromagnetic coils through amplifiers. The four electromagnets control the rotor’s position in response to the signals transmitted from the sensors. The rotor is maintained in equilibrium under the control of the electromagnetic forces. Its position is determined by means of sensors which continuously monitor any displacements through an electronic control system. As in every control system, damping of the loop is provided by means of a phase advance command from one or more differenciating circuits of the position error signal. The capability of modifying the electromagnetic force both in terms of amplitude and phase leads to the benefit of specific properties for the application, in particular: - automatic balancing characterized by the rotation of the moving part around its main axis of inertia, and not around the axis of the bearings allowing operation without vibrations, - adjustable damping of the suspension allowing easy passing of the critical speeds of the rotor, - high and adjustable stiffness yielding maximum accuracy of rotor equilibrium position, - permanent diagnosis of machine operation due to the knowledge of all rotation characteristics (speed, loads on the bearings, position of the rotation axis, eccentricity, out-of-balance, disturbance frequency).


2008 ◽  
Vol 2008 (0) ◽  
pp. _656-1_-_656-4_
Author(s):  
Yutaka MARUYAMA ◽  
Takeshi MIZUNO ◽  
Masaya TAKASAKI ◽  
Yuji ISHINO ◽  
Hironori KAMENO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document