scholarly journals Fatigue Strength under Combined Rotating Bending and Torsional Load : Report 3, Fatigue Behavior in a Circular Specimen with a Transverse Hole

1973 ◽  
Vol 39 (327) ◽  
pp. 3255-3262
Author(s):  
Saneyasu HOSHI ◽  
Hiroshi NAKAMURA ◽  
Itsuro AOKI ◽  
Yoshikata KOBAYASHI
2007 ◽  
Vol 561-565 ◽  
pp. 2179-2182 ◽  
Author(s):  
Mehmet Cingi ◽  
Onur Meydanoglu ◽  
Hasan Guleryuz ◽  
Murat Baydogan ◽  
Huseyin Cimenoglu ◽  
...  

In this study, the effect of thermal oxidation on the high cycle rotating bending fatigue behavior of Ti6Al4V alloy was investigated. Oxidation, which was performed at 600°C for 60 h in air, considerably improved the surface hardness and particularly the yield strength of the alloy without scarifying the tensile ductility. Unfortunately, the rotating bending fatigue strength at 5x106 cycles decreased from about 610 MPa to about 400 MPa upon oxidation. Thus, thermal oxidation leaded a reduction in the fatigue strength of around 34%, while improving the surface hardness (HV0.1) and yield strength 85 % and 36 %, respectively.


2020 ◽  
Author(s):  
Haftirman ◽  
Teguh Prioyono ◽  
Muhammad Kholil ◽  
Dinalant Al Tanggaraju ◽  
Mohd Arif Anuar Mohd Salleh ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


2014 ◽  
Vol 891-892 ◽  
pp. 1451-1456
Author(s):  
Elena Bassoli ◽  
Andrea Baldini ◽  
Andrea Gatto ◽  
Antonio Strozzi ◽  
Lucia Denti

Difficult-to cut-materials are associated with premature tool failure, most likely in the case of complex geometries and this shapes. However, Nickel-based alloys are commonly used in high-temperature and aerospace applications, where thin deep holes are often required. Then, the only viable manufacturing solution relies on non-contact processes, like electrodischarge (ED) drilling. Morphology of ED machined surfaces is significantly different than obtained by metal-cutting operation and is known to jeopardize fatigue strength, but the extent needs to be gauged and related to the process parameters. Aim of the paper is to study the effect of holes (0.8 mm diameter, aspect ratio 10) produced by ED drilling on the fatigue life of Inconel 718. Rotating bending fatigue tests are carried out on specimens drilled under two ED setups, as well as with a traditional cutting tool. Specimens free from holes are fatigued under the same conditions for comparison. Based on previous studies, extremal ED parameters are selected, giving best surface finish versus highest productivity. S-N curves show that the ED process causes a decrease of the fatigue resistance with respect to traditional drilling, whereas the effect of different ED setups is negligible. Maximum productivity can thus be pursued with no threat to fatigue performance. The fatigue limit variation is quantified by using the superposition effect principle: ED drilling causes an increase of the stress concentration factor around 25% if compared to traditional drilling. The macroscopic fatigue behavior is integrated with a study of the effects of the different drilling processes in the micro-scale, by means of a microstructural and fractographic analysis.


2012 ◽  
Vol 457-458 ◽  
pp. 1025-1031 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1499
Author(s):  
Patricio G. Riofrío ◽  
Fernando Antunes ◽  
José Ferreira ◽  
António Castanhola Batista ◽  
Carlos Capela

This work is focused on understanding the significant factors affecting the fatigue strength of laser-welded butt joints in thin high-strength low-alloy (HSLA) steel. The effects of the weld profile, imperfections, hardness, and residual stresses were considered to explain the results found in the S-N curves of four welded series. The results showed acceptable fatigue strength although the welded series presented multiple-imperfections. The analysis of fatigue behavior at low stress levels through the stress-concentrating effect explained the influence of each factor on the S-N curves of the welded series. The fatigue limits of the welded series predicted through the stress-concentrating effect and by the relationship proposed by Murakami showed good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document